Chromosomal microarray analysis proves accurate

March 29, 2007

Two years and more than 2,000 samples after researchers at Baylor College of Medicine started to use a new gene-chip technology called chromosomal microarray analysis to look for potential genetic abnormalities in children, they find that it is remarkably sensitive in detecting abnormalities in individual chromosomes, according to a report that appears online today in the journal Public Library of Science ONE.

"Chromosomal microarray analysis is far better at picking up these abnormalities than other common methods," said Dr. Arthur Beaudet, chair of the department of molecular and human genetics at BCM and an author of the paper. "It allows us to identify the source of abnormalities in many cases."

He said the technique does not help with identifying the problem in all children, but there is a five to 12 percent chance that it will identify an abnormality in children with various disabilities where the previous chromosomal testing did not. This study involved two versions of the test, and the newer version was more successful in identifying chromosomal abnormalities.

The targeted microarray analysis used here is essentially a gene chip method of assessing the makeup of chromosomes in a particular part of the human genome (genetic blueprint).

In areas of the genome, there are portions of the genetic material that show imbalances because they are duplicated or deleted abnormally with gains and losses of genetic information.

"If these changes are big enough, they can cause significant disabilities," said Beaudet.

The technique used is also much more efficient, making it possible to do the equivalent of a couple of thousand of more common testing methods in one test.

"If you tried to do these individually, it would be cost prohibitive," said Beaudet. Currently, chromosomal microarray analysis costs from $950 to $1,500.

In the current study, Beaudet and his colleagues analyzed the results from 2,513 samples taken from patients referred to the laboratory because they had physical or mental features that suggested one of these repetitions or deletions as a genetic cause. The array technique identified the chromosomal problem (too much or too little genetic material in a particular spot) in 8.5 percent of the total group of patients studied. This high resolution genome analysis promise to transform the practice of clinical genetics," said Beaudet.

More important, the technique found abnormalities in 5.2 percent of patients for whom more traditional techniques had not identified the genetic cause.

"We are constantly improving the test," said Beaudet. Eventually, he said, he hopes to develop tests that will look at greater areas of the genome. However, he said, there are many areas of the genome where all normal people have gains or losses of genetic material compared to the average genome.

"It is difficult to determine if it is causing a problem or not," said Beaudet. Comparing a child’s genome to that of the parents can often determine if this is a normal familial variation or a disease-causing one.

Source: Baylor College of Medicine

Explore further: Study tracks evolutionary transition to destructive cancer

Related Stories

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Team identifies genetic defect that may cause rare movement disorder

February 22, 2018
A Massachusetts General Hospital (MGH)-led research team has found that a defect in transcription of the TAF1 gene may be the cause of X-linked dystonia parkinsonism (XDP), a rare and severe neurodegenerative disease. The ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

Personal Genome Project Canada study results show promise for health care in Canada

February 5, 2018
First results from the Personal Genome Project Canada, which sequenced the entire personal genomes of 56 healthy participants, suggest whole genome sequencing can benefit health care in Canada, according to results published ...

Genome wide association study of epigenetic aging rates in blood reveals a critical role for TERT

February 2, 2018
Researchers from several institutions, including, UCLA, Boston University, Stanford University and the Institute for Aging Research at Hebrew SeniorLife, analyzed blood samples from nearly 10,000 people to find that genetic ...

Recommended for you

Add broken DNA repair to the list of inherited colorectal cancer risk factors

February 23, 2018
An analysis of nearly 3,800 colorectal cancer patients—the largest germline risk study for this cancer to date—reveals opportunities for improved risk screening and, possibly, treatment.

Defects on regulators of disease-causing proteins can cause neurological disease

February 22, 2018
When the protein Ataxin1 accumulates in neurons it causes a neurological condition called spinocerebellar ataxia type 1 (SCA1), a disease characterized by progressive problems with balance. Ataxin1 accumulates because of ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.