Clock gene sleep research has implications for workforce

March 9, 2007

People differ markedly in their response to sleep deprivation but biological markers of these differences have remained elusive. In findings published in this week's issue of Current Biology, researchers at the University of Surrey's Sleep Research Centre report their discovery that a genetic difference in the body clock gene PERIOD3 makes some people particularly sensitive to the effects of sleep deprivation.

There are two variants of this gene in humans, which produce either a long or short protein variant. The multidisciplinary research team, consisting of biological scientists and psychologists, compared how individuals with just the longer variant and those with just the shorter one coped with being kept awake for two days and the intervening night. According to Dr Antoine Viola, lead author on the research paper: "The differences between the individuals were striking. Some participants were experiencing no problems staying awake and others were really struggling".

The results were most pronounced during the early hours of the morning (between 4 and 8 am). Individuals with the longer variant of the gene performed very poorly on tests for attention and working memory. Cognitive Psychologist Professor John Groeger, says: "the early morning performance problems of those with the long variant have important implications for safety and efficiency at work". Research team leader, Professor Derk-Jan Dijk, explains: "This is exactly the time of night when shift workers struggle to stay awake and many sleepiness-related accidents occur.

This experiment was conducted in the laboratory and whether the PERIOD3 gene also predicts individual differences in the tolerance to night shift work remains to be demonstrated". Another member of the team, Dr Malcolm von Schantz, adds: "Approximately 10% of the UK population carries just the longer form of this gene. The possibility that they may be genetically predisposed to perform poorly late at night is a cause for concern".

An additional finding was that the effects of this gene on performance may be mediated by its effects on sleep. When the volunteers were allowed to sleep those with just the longer form of the gene spent about 50% more of their time in slow-wave sleep, the deepest form of sleep. Slow-wave sleep is a marker of sleep need, and it is known that carrying a sleep debt makes it very difficult to stay awake and perform at night.

Dr Simon Archer, who previously discovered that variation in this gene is associated with morning and evening preference, concludes: "We know that variation in PERIOD3 is linked to whether an individual is a "lark" or an "owl", so we expected that this could have an influence on body clock function. What we weren't expecting was such a dramatic impact on sleep and performance". Professor Debra Skene, adds: "The possible role of clock genes in human sleep physiology opens up an exciting new avenue of research".

Source: University of Surrey

Explore further: Night shifts may hinder body's ability to repair DNA damage

Related Stories

Night shifts may hinder body's ability to repair DNA damage

June 26, 2017
Night shift work may hinder the body's ability to repair DNA damage caused by normal cellular processes, suggests a small study published online in Occupational & Environmental Medicine.

Improving sleep in children with ADHD has some lessons for all parents

June 5, 2017
Every evening around the world, parents put their children to bed, hoping they'll go to sleep easily. For most parents that's exactly what happens. But for some kids, sleep does not come easily and evenings are a battle.

A 12-hour biological clock coordinates essential bodily functions

June 6, 2017
Some bodily activities, sleeping, for instance, mostly occur once every 24 hours; they follow a circadian rhythm. Other bodily functions, such as body temperature, cognitive performance and blood pressure, present an additional ...

Changes in circadian clock can alter the body's microbes and response to diet

May 3, 2017
Researchers at Baylor College of Medicine have discovered that changing the circadian clock in mouse liver can alter how the body responds to diet and also change the microbes living in the digestive track. In this study, ...

Delayed meal times reset body clocks

June 1, 2017
The human body runs according to a roughly 24-hour cycle, controlled by a "master" clock in the brain and peripheral clocks in other parts of the body that are synchronized according to external cues, including light. Now, ...

Aggressive flies: A powerful new model for neuropsychiatric disorders

June 7, 2017
Alterations in social behaviour, including aggression, are associated with a number of neuropsychiatric disorders such as schizophrenia and bipolar disorder. Along with DiGeorge syndrome and velo-cardio-facial syndrome, these ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.