Clock gene sleep research has implications for workforce

March 9, 2007

People differ markedly in their response to sleep deprivation but biological markers of these differences have remained elusive. In findings published in this week's issue of Current Biology, researchers at the University of Surrey's Sleep Research Centre report their discovery that a genetic difference in the body clock gene PERIOD3 makes some people particularly sensitive to the effects of sleep deprivation.

There are two variants of this gene in humans, which produce either a long or short protein variant. The multidisciplinary research team, consisting of biological scientists and psychologists, compared how individuals with just the longer variant and those with just the shorter one coped with being kept awake for two days and the intervening night. According to Dr Antoine Viola, lead author on the research paper: "The differences between the individuals were striking. Some participants were experiencing no problems staying awake and others were really struggling".

The results were most pronounced during the early hours of the morning (between 4 and 8 am). Individuals with the longer variant of the gene performed very poorly on tests for attention and working memory. Cognitive Psychologist Professor John Groeger, says: "the early morning performance problems of those with the long variant have important implications for safety and efficiency at work". Research team leader, Professor Derk-Jan Dijk, explains: "This is exactly the time of night when shift workers struggle to stay awake and many sleepiness-related accidents occur.

This experiment was conducted in the laboratory and whether the PERIOD3 gene also predicts individual differences in the tolerance to night shift work remains to be demonstrated". Another member of the team, Dr Malcolm von Schantz, adds: "Approximately 10% of the UK population carries just the longer form of this gene. The possibility that they may be genetically predisposed to perform poorly late at night is a cause for concern".

An additional finding was that the effects of this gene on performance may be mediated by its effects on sleep. When the volunteers were allowed to sleep those with just the longer form of the gene spent about 50% more of their time in slow-wave sleep, the deepest form of sleep. Slow-wave sleep is a marker of sleep need, and it is known that carrying a sleep debt makes it very difficult to stay awake and perform at night.

Dr Simon Archer, who previously discovered that variation in this gene is associated with morning and evening preference, concludes: "We know that variation in PERIOD3 is linked to whether an individual is a "lark" or an "owl", so we expected that this could have an influence on body clock function. What we weren't expecting was such a dramatic impact on sleep and performance". Professor Debra Skene, adds: "The possible role of clock genes in human sleep physiology opens up an exciting new avenue of research".

Source: University of Surrey

Explore further: Study: Sleeping sickness not just a sleeping disorder

Related Stories

Study: Sleeping sickness not just a sleeping disorder

January 4, 2018
An international study from the Instituto de Medicina Molecular shows one of Africa's most lethal diseases is actually a circadian rhythm disorder caused by the acceleration of biological clocks controlling a range of vital ...

Scheduled feeding improves neurodegenerative symptoms in mice

January 2, 2018
Restricting meals to the same time each day improves motor activity and sleep quality in a mouse model of Huntington's disease, according to new research published in eNeuro. These findings suggest that eating on a strict ...

Biologists research the mechanism of an auxiliary circadian clock

November 20, 2017
In December, the Nobel Prize for Medicine and Physiology will be awarded for the identification of genes that control the inner clock in fruit flies. Biochemist Professor Dr. Dorothee Staiger of Bielefeld University has been ...

Nobel Prize: Circadian rhythm field poised for medical advances

December 6, 2017
Circadian rhythms affect some of the most crucial functions in the human body, from sleep and mental health to metabolism and defending against deadly diseases such as cancer.

Heart surgery? Slate it for the afternoon, study says

October 27, 2017
The risk of serious heart problems after open heart surgery nearly doubles when the operation is performed in the morning rather than the afternoon, researchers said Friday.

Stressed-out worms hit the snooze button

December 15, 2017
When you catch a nasty cold, curling up in bed to sleep may be the only activity you can manage. Sleeping in response to stress isn't a uniquely human behavior: many other animals have the same reaction, and it's not clear ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.