Researchers shed light on shrinking of chromosomes

June 11, 2007

A human cell contains an enormous 1.8 metres of DNA partitioned into 46 chromosomes. These have to be copied and distributed equally into two daughter cells at every division. Condensation, the shortening of chromosomes, allows the cell to handle such huge amounts of genetic material during cell division and helps preventing fatal defects in chromosome separation. Now researchers from the European Molecular Biology Laboratory (EMBL) for the first time tracked chromosome condensation in mammalian cells over the entire course of cell division. In this week’s advanced online publication of Nature Cell Biology they report crucial new insights into timing, function and molecular basis of chromosome condensation.

What happens when chromosomes are not correctly separated and distributed during cell division we know very well; two daughter cells with either broken chromosomes or different numbers of chromosomes result and severe diseases including cancer can arise. But so far we know only little about condensation, a process crucial to the successful separation of chromosomes. Using powerful microscopes, researchers led by Jan Ellenberg at EMBL looked at living mammalian cells to find out how and when chromosomes shorten during cell division.

Condensation begins early, when the cell starts preparing for division, and the chromosomes become shorter and shorter until they are about to separate and migrate towards the poles of the cell.

“It is at this stage that textbooks say chromosomes are shortest. Then, after separating they would expand again,” says Ellenberg. “But we found something very different. Shortly after they finish separating, chromosomes actually condense even further. This makes sense, because in this way they are shortest when the physical division of one cell body into two takes place. Like this, no long chromosome arms extend over the plane of division, because that could expose the DNA to serious mechanical damage.”

The extreme condensation of chromosomes towards the end of cell division can also serve as a safety net if something goes wrong with chromosome separation in earlier phases of division. When the researchers added chemicals to the cell to block the late condensation, more separation defects appeared.

"Sometimes chromosomes get stuck and cannot be fully separated by the spindle that normally distributes them into the daughter cells,” says Felipe Mora-Bermúdez, who carried out the experiments in Ellenberg’s lab, “we think that the ‘super condensation’ at later stages helps to disentangle such chromosomes and acts as a back-up mechanism to rescue separation defects.”

The EMBL researchers found that an enzyme called Aurora kinase is crucially involved in this process. Blocking this enzyme abolishes late condensation of chromosomes. They now hope to uncover the detailed molecular mechanism underlying the late shortening of chromosomes. This could further advance our understanding of cell division and the risk factors that lead to defects in chromosome separation and their dramatic consequences.
Source: European Molecular Biology Laboratory

Explore further: New approach to studying chromosomes' centers may reveal link to Down syndrome and more

Related Stories

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Study finds link between fragile X syndrome gene and dysregulated tissue growth

December 5, 2017
Researchers at Indiana University have found a previously undetected link between the gene that causes fragile X syndrome and increased tissue growth. The link could reveal a key biological mechanism behind the serious physical ...

Researchers first to unlock key molecular mystery of premature aging syndromes

November 27, 2017
New research from Florida State University is beginning to piece together the stubborn puzzle posed by a family of rare and debilitating premature aging disorders.

Compound found in berries and red wine can rejuvenate cells, suggests new study

November 15, 2017
By the middle of this century the over 60s will outnumber the under 18s for the first time in human history. This should be good news, but growing old today also means becoming frail, sick and dependent. A healthy old age ...

Chemists discover a surprising effect of a well-known leukemia drug

November 13, 2017
Researchers from RUDN University and Institute of Biomedical Chemistry of the Russian Academy of Sciences have identified an alternative mechanism for the effective antitumor drug—an enzyme called L-asparaginase. Some isoenzymes ...

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.