Researchers Find Brain Pathway of Depression in Rats

July 5, 2007

Scientists' hunt for the cause of depression has implicated so many suspects and found so many treatments with different mechanisms that the condition remains an enigma. Now researchers at the Stanford University School of Medicine have identified one unifying principle that could explain how a range of causes and treatments for depression converge.

They found that in rats the differing mechanisms of depression and its treatment in the end appear to funnel through a single brain circuit. Changes in how the electrical signals spread through the circuit appear to be the cause of depression-related behavior, according to their study. Their findings will be published July 6 in Science Express, the advance online publication of the journal Science.

"I think this will help us make sense of how there can be so many different causes and treatments of depression," said senior author Karl Deisseroth, MD, PhD, assistant professor of bioengineering and of psychiatry and behavioral sciences. "It also helps us understand conceptually how something that seems as hard to get traction on as depression can have a really quantitative, concrete basis."

The work also may have implications for the search for new treatments for depression. "You can use that common pathway as the most efficient, most direct targeted way to find truly specific treatments," he said.

Deisseroth, who sees many depressed patients in clinic, said he has come to appreciate how the bumps in the road that most people see as normal obstacles in life become insurmountable hurdles to depressed people, causing them to lapse into helplessness.

Reasoning that the brain is essentially a complex electrical circuit, Deisseroth's team set out to test the theory of whether brain circuitry malfunction could be at the root of depression. To explore the idea in a precise, quantitative way, they needed to develop a visualization tool that was faster and sharper than brain imaging systems currently available, such as MRI or CT scans.

Raag Airan, an MD/PhD student in Deisseroth's lab and co-first author of the study, led the development of a technique called voltage-sensitive dye imaging for this model. This technique allows intact brain circuits to be viewed in real time, enabling the researchers to watch living neurons in action, across entire brain networks.

The system uses a fluorescent dye, sensitive to brain circuit activity, which the researchers introduce into the animal brain tissue. As dyed circuits light up and darken again in response to electrical activity, very fast high-resolution cameras capture the action. The researchers can observe how different stimuli received by the animal, such as a dose of an antidepressant drug, affect circuit operation.

The researchers used slices of rat brain, Deisseroth said, "like a computer repair technician would take out a circuit board" to test its functional properties. The brain slices, which remain active for many hours, came from parts of the hippocampus, a region long implicated in depression. They also tested slices from rats treated with the antidepressant medications fluoxetine and imipramine.

The team carried out the study using a standard rat model of depression. Even though the rats do not mimic the entire complexity of genetic and environmental causes of human depression, Deisseroth explained, the animals exhibit similar symptoms and also get better from the same medications that work on humans.

In these rats, they found an alteration in electrical activity flow through the brain that could be corrected by human antidepressants. The extent that the signal spread through the brain sample was diminished in the "depressed" rats, a crucial finding that would not be apparent with other experimental methods, Deisseroth said. They needed to be able to image a whole circuit simultaneously - and very rapidly - to see the effect.

"What surprised me most was how specifically the measure tracked the depression-related behavior," said Airan. "We usually think of psychiatric disorders as fuzzy and intractable, and this study showed me that, with the right tools, we could really put psychiatry on a quantitative framework."

Leslie Meltzer, neurosciences graduate student and co-first author, searched for the cellular basis of these changes in circuitry. An obvious place to start, she said, was to look at the formation of new neurons in the hippocampus, a process that neuroscientists have suggested is at the root of how antidepressants work. What they found was that the growth of new neurons could account for the behavioral improvements seen from treatment as well as the circuitry changes. The converse was not true: Fewer new neurons in that region did not equal depression.

In other words, in their model system, the two states appear to funnel through a common pathway - despite very different cellular mechanisms.

"The holy grail of psychiatry is to try to find final common pathways that can make sense of how genes and life experiences end up with the same result," said Deisseroth. "And the same goes for medications. There are many treatments that act in fundamentally different ways - how do we make sense of all that complexity""

Deisseroth predicted that, as noninvasive imaging of human brains gets better in the next few years, researchers will be able to measure these same quantitative measures in people as well. "That will be a wonderful thing when that happens," he said.

Source: Stanford University Medical Center

Explore further: Staying awake—the surprisingly effective way to treat depression

Related Stories

Staying awake—the surprisingly effective way to treat depression

January 23, 2018
The first sign that something is happening is Angelina's hands. As she chats to the nurse in Italian, she begins to gesticulate, jabbing, moulding and circling the air with her fingers. As the minutes pass and Angelina becomes ...

Brain imaging helps redefine intelligence

February 13, 2018
High-tech scans of the resting human brain can provide a new way to define and interpret the brain's actual mental capacity, new research suggests.

Ultrathin needle can deliver drugs directly to the brain

January 24, 2018
MIT researchers have devised a miniaturized system that can deliver tiny quantities of medicine to brain regions as small as 1 cubic millimeter. This type of targeted dosing could make it possible to treat diseases that affect ...

Study finds neurotransmitter may play a role in alcohol relapse, addiction

February 12, 2018
A study led by Indiana University on neurochemical changes associated with alcohol addiction found that the neurotransmitter glutamate plays a role in some alcohol cravings.

How OCD impairs memory and learning in children and adolescents – and what to do about it

February 8, 2018
Imagine feeling like you're covered in germs that could kill you every time you come home from being in a public space. Before showering, you'd have to get inside without letting anything that's touched the outside world ...

Study identifies brain circuit controlling social behavior

January 11, 2018
A new study by researchers at Roche in Basel, Switzerland has identified a key brain region of the neural circuit that controls social behavior. Increasing the activity of this region, called the habenula, led to social problems ...

Recommended for you

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.