Immune cells promote blood vessel formation in mouse endometriosis

October 18, 2007

A discovery in mice of immune cells that promote the formation of new blood vessels could lead to new treatments for endometriosis, a painful condition associated with infertility that affects up to 15 percent of women of reproductive age.

The formation of new blood vessels, or angiogenesis, is known to encourage the growth of tumors and endometriosis lesions. A team led by Ofer Fainaru, MD, PhD, a research associate in the Vascular Biology Program at Children's Hospital Boston and Harvard Medical School, found that dendritic cells—highly specialized immune cells—help trigger angiogenesis in a mouse model of endometriosis. Their findings were published online last month in the FASEB journal. Judah Folkman, MD, director of Children’s Vacular Biology Program, who helped found the field of angiogenesis, was the paper’s senior author.

Endometriosis occurs when endometrium, a tissue normally found in the inner lining of the uterus, grows elsewhere in the body—most commonly in the abdominal cavity. The misplaced endometrial tissue begins as small lesions, or masses, but once blood vessels are recruited, the lesions grow larger and respond to female hormones, resulting in inflammation, cyclic pelvic pain, and infertility.

In the mouse model, the researchers observed that dendritic cells infiltrate endometriosis lesions, and near the sites where they invade, new blood vessels form. Injecting mice with excess dendritic cells caused their lesions to gain more blood vessels and to grow larger.

The researchers also found that dendritic cells have a strikingly similar effect on intra-abdominal tumors.

When the researchers grew dendritic cells together with endothelial cells—the cells that line blood vessel walls—the endothelial cells migrated towards the dendritic cells. The team hypothesizes that dendritic cells, after embedding in a new lesion or tumor, act like foremen on a building team: they call in, direct and support endothelial cells that build the new blood vessels.

"We believe that targeting dendritic cells may prove to be a promising strategy for treating conditions dependent on angiogenesis, such as endometriosis and cancer," says Fainaru. But first, the team must demonstrate that dendritic cells are essential—that without these cells in mice, new blood vessels do not form.

"Our next step would be to look for specific dendritic cell inhibitors that could have the potential to block angiogenesis in these conditions," says Fainaru.

The team hopes to develop cell-specific therapy for angiogenesis-dependent diseases that will be more effective and less toxic than current treatments. Currently, the most effective treatment for endometriosis is surgically removing the lesions, but this does not prevent them from growing back—as large and symptomatic as before. If dendritic cells are indeed ringmasters and not sideliners in new blood vessel growth, locally knocking them out just after an initial surgery, or altering them in some way, could render the lesions tiny and harmless.

Similarly, potential dendritic-cell inhibitors, when added to other agents that stop new blood vessels from forming, could enhance doctors’ ability to choke off growing tumors, Fainaru adds.

Source: Children's Hospital Boston

Explore further: Scientists find the key to improved cancer immunotherapy

Related Stories

Scientists find the key to improved cancer immunotherapy

July 18, 2017
Researchers at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.) have investigated how different subtypes of essential immune-response cells called CD8+ T lymphocytes cooperate to mount a stronger ...

New types of blood cells discovered

April 21, 2017
Scientists have identified new classes of cells in the human immune system.

Scientists identify trigger for crucial immune system cell

October 16, 2014
Scientists at The Scripps Research Institute (TSRI) have identified the long-sought activating molecules for a rare but crucial subset of immune system cells that help rally other white blood cells to fight infection.

Taking immune cells for a test drive

March 17, 2014
You're on a crowded subway car and someone nearby sneezes. Influenza viruses shed by your fellow rider are expelled in droplets of saliva that land on you and the person next to you. Two days later, you begin suffering from ...

Brain cancer breakthrough: Experimental vaccine trains immune system to target remaining tumor cells after surgery

November 14, 2012
UC Irvine oncologists are looking for new ways to treat glioblastoma multiforme, the deadliest type of brain cancer. While surgery followed by chemotherapy and radiation is the current standard of care, it doesn't fully eliminate ...

Immunology: White blood cells show their stripes

August 28, 2013
For the human immune system to work effectively, the body must be able to distinguish invading pathogens, such as fungi and bacteria, from its own healthy tissue. A group of white blood cells known as dendritic cells (DCs) ...

Recommended for you

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.