A protein converts immune cells to tumor killers

November 13, 2007

Tumor cells are masters at evading detection. But new research from Rockefeller University shows how they can be exposed. By harnessing the immune system of patients with a rare neurological disorder, scientists have figured out how to transform immune cells that barely detect the presence of breast and ovarian tumors into ones that obliterate them.

The findings, which appear in this week’s issue of the Proceedings of the National Academy of Sciences, not only bring researchers closer to a therapy for gynecological cancers, but also to the key that could unlock the general secrets of tumor immunity.

“It’s a very romantic notion that the immune system recognizes tumors as foreign substances and kills them off,” says first author Bianca Santomasso, a biomedical fellow. “Instead of using the slash, burn and poison approach of surgery, radiation therapy and chemotherapy, we are trying to harness naturally occurring tumor immunity from patients with paraneoplastic cerebellar degeneration to treat ovarian and breast cancer patients.”

The research, led by Robert Darnell, a Howard Hughes Medical Institute investigator, head of Rockefeller's Laboratory of Molecular Neuro-oncology and Robert and Harriet Heilbrunn Professor in cancer biology, extends a hypothesis put forward by American and Australian scientists in 1957: Everybody develops tumors, but the immune system naturally kills off these cancerous cells day in and day out. The problem with this hypothesis, though, was that there wasn’t any way to test it since patients didn’t show any symptoms, explains Darnell, who is also a senior attending physician at The Rockefeller University Hospital.

The rare neurodegenerative disease called paraneoplastic cerebellar degeneration (PCD) provided researchers with the opportunity to test this hypothesis. It is thought that patients get this disease when the immune system recognizes and attacks a protein that is expressed in tumor cells; these immune cells kill the tumor and protect the body from cancer, but then they go one step too far: They infiltrate the brain and kill a group of neurons that also express this protein, an antigen called cdr2. When these patients go to the doctor to check out their neurological symptoms, they are told that they also have gynecological tumors — often small ones that have not metastasized.

“These PCD patients had tumors for a while, but they never knew,” says Darnell. “It is as if they developed an immune response to their own cancer.”

Unlike most patients with ovarian and breast cancer, patients with PCD have immune cells circulating in their blood that specifically target the cdr2 protein as well as the molecular platform on which it docks. Although this protein resides within tumor cells (not on their surfaces), these immune cells, called CD8+ cytotoxic T cells, can still “see” cdr2 because a section of this protein docks onto a molecular platform that ships it to the cell’s surface. Darnell and Santomasso’s work, with help from a number of laboratory colleagues, was the first to identify which section, or peptide fragment, was naturally attached to this molecular platform — an important finding because this interaction determines how cytotoxic T cells target the cdr2-expressing cells. When the T cell’s receptor binds to cdr2 and its platform, the immune cell releases substances that destroy the tumor.

In order to help breast and ovarian cancer patients, however, Santomasso and her colleagues needed to make the cancer patients’ immune cells like those of PCD patients — cells that could kill tumors that harbor the cdr2 protein. First, they injected healthy mice with the cdr2 protein and determined that the peptide fragment that bound most strongly to the platform was also the one most strongly recognized by CD8+ cytotoxic T cells. From these potent cdr2-specific CD8+ cytotoxic T cells, they isolated the genes that code for the T cell receptor. When the team injected the T cell receptor genes to normal human immune cells, the cells were able to target cdr2-expressing human tumor cell lines and kill them.

“I was astonished,” says Santomasso. “Human T cells can be transformed to specifically recognize antigens that are expressed in tumors and kill them. For breast and ovarian cancer patients, these findings hold great therapeutic promise.”

Source: Rockefeller University

Explore further: Maintaining sufficient vitamin D levels may help to prevent rheumatoid arthritis

Related Stories

Maintaining sufficient vitamin D levels may help to prevent rheumatoid arthritis

November 20, 2017
Maintaining sufficient vitamin D levels may help to prevent the onset of inflammatory diseases like rheumatoid arthritis, research led by the University of Birmingham has discovered.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Zika-related nerve damage caused by immune response to the virus

November 20, 2017
The immune system's response to the Zika virus, rather than the virus itself, may be responsible for nerve-related complications of infection, according to a Yale study. This insight could lead to new ways of treating patients ...

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Lupus patients exhibit altered cell proteins, a discovery with potential implications for diagnostics

November 16, 2017
Autoimmune diseases such as lupus—in which the body attacks its own cells and tissues—are on the rise, according to A*STAR's Anna-Marie Fairhurst. Her team is the first to observe that patients with lupus exhibit an increased ...

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.