Cornell researcher seeks clues to how tuberculosis infects cells

December 21, 2007

Cornell researchers are using advanced genetic techniques to better understand the relationship between the bacteria that cause tuberculosis and the human immune system defense cells that engulf them.

The researchers have discovered that unlike many bacterial pathogens, Mycobacterium tuberculosis does not react when immune system cells called macrophages initially make contact; but the bacterium's genes become activated minutes after the pathogen is enveloped by a macrophage and contained in one of its membrane-bound compartments called vacuoles.

David Russell, professor of molecular microbiology at Cornell's College of Veterinary Medicine, and colleagues reported in a November issue of the journal Cell Host and Microbe, that increased acidity inside the vacuoles containing the bacteria serves as the trigger for M. tuberculosis genes to express proteins.

The study also compared the responses of M. tuberculosis to a live bacterial vaccine against tuberculosis known as Bacillus Calmette-Guerin (BCG). It found that the two bacteria may each respond differently to the same stimuli and that BCG appears less capable of protecting itself once inside a macrophage. The findings are consistent with the reduced virulence of BCG, which is key to its safety as a vaccine.

The study is a small part of a larger plan to understand the processes that allow the bacteria to survive within macrophages and then to use that knowledge to develop more effective drugs to fight tuberculosis, which currently kills 2 million people worldwide each year. Existing drugs require six to nine months to treat the active disease that invades and replicates within the lungs.

"What we propose is the exploitation of the data obtained from these basic science studies to develop a comprehensive program of drug development that targets bacterial processes critical to survival inside the human host," said Russell.

Russell's lab used gene chips, or microarrays, to identify genes activated under specific environmental conditions. This allowed them to generate real-time readouts of bacterial health and their response to stress. The researchers have also created real-time readouts that measure conditions within the tuberculosis-containing vacuole at any time during the immune system's process.

"Our goal is to develop these bacterial fitness readouts to screen small molecule libraries for compounds that will kill M. tuberculosis inside the macrophage," said Russell. "Unfortunately, Cornell does not have either the instrumentation or the chemical libraries necessary to do this work, so I am trying different, private funding agencies to get the support to purchase equipment and libraries."

Source: Cornell University Communications

Explore further: Properly sterilizing scopes still a challenge, experts say

Related Stories

Properly sterilizing scopes still a challenge, experts say

July 4, 2017
Maybe you're getting a gallstone removed or maybe your doctor says there's a new way to remove a painful kidney stone. There's a medical device to pluck them out, but how clean is it?

Mass spectrometry helps researchers 'watch' how antibiotics attack tuberculosis bacteria inside cells

November 1, 2012
Weill Cornell Medical College researchers report that mass spectrometry, a tool currently used to detect and measure proteins and lipids, can also now allow biologists to "see" for the first time exactly how drugs work inside ...

Tuberculosis and Parkinson's disease linked by unique protein

September 4, 2013
A protein at the center of Parkinson's disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to scientists led by UC San Francisco microbiologist ...

Tuberculosis bacteria build 'edible' havens in immune cells

April 18, 2016
Bacteria that cause tuberculosis trick immune cells meant to destroy them into hiding and feeding them instead. This is the result of a study led by researchers from NYU Langone Medical Center and published online April 18 ...

New hope in the fight against tuberculosis

June 4, 2015
According to figures of the World Health Organization, some 8.7 million people contracted tuberculosis in 2012 and this disease is fatal for approximately 1.3 million people throughout the world each year. One of the main ...

Scientists identify protein central to immune response against tuberculosis bacteria

January 12, 2017
UT Southwestern Medical Center researchers have identified a protein that is central to the immune system's ability to recognize and destroy the bacterium responsible for the global tuberculosis (TB) epidemic.The new finding, ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.