Cornell researcher seeks clues to how tuberculosis infects cells

December 21, 2007

Cornell researchers are using advanced genetic techniques to better understand the relationship between the bacteria that cause tuberculosis and the human immune system defense cells that engulf them.

The researchers have discovered that unlike many bacterial pathogens, Mycobacterium tuberculosis does not react when immune system cells called macrophages initially make contact; but the bacterium's genes become activated minutes after the pathogen is enveloped by a macrophage and contained in one of its membrane-bound compartments called vacuoles.

David Russell, professor of molecular microbiology at Cornell's College of Veterinary Medicine, and colleagues reported in a November issue of the journal Cell Host and Microbe, that increased acidity inside the vacuoles containing the bacteria serves as the trigger for M. tuberculosis genes to express proteins.

The study also compared the responses of M. tuberculosis to a live bacterial vaccine against tuberculosis known as Bacillus Calmette-Guerin (BCG). It found that the two bacteria may each respond differently to the same stimuli and that BCG appears less capable of protecting itself once inside a macrophage. The findings are consistent with the reduced virulence of BCG, which is key to its safety as a vaccine.

The study is a small part of a larger plan to understand the processes that allow the bacteria to survive within macrophages and then to use that knowledge to develop more effective drugs to fight tuberculosis, which currently kills 2 million people worldwide each year. Existing drugs require six to nine months to treat the active disease that invades and replicates within the lungs.

"What we propose is the exploitation of the data obtained from these basic science studies to develop a comprehensive program of drug development that targets bacterial processes critical to survival inside the human host," said Russell.

Russell's lab used gene chips, or microarrays, to identify genes activated under specific environmental conditions. This allowed them to generate real-time readouts of bacterial health and their response to stress. The researchers have also created real-time readouts that measure conditions within the tuberculosis-containing vacuole at any time during the immune system's process.

"Our goal is to develop these bacterial fitness readouts to screen small molecule libraries for compounds that will kill M. tuberculosis inside the macrophage," said Russell. "Unfortunately, Cornell does not have either the instrumentation or the chemical libraries necessary to do this work, so I am trying different, private funding agencies to get the support to purchase equipment and libraries."

Source: Cornell University Communications

Explore further: Molecular weapon targets bad bacteria

Related Stories

Molecular weapon targets bad bacteria

January 12, 2018
Instead of prescribing a broad-spectrum antibiotic, like a tiny nuclear missile that indiscriminately kills both bad and good bacteria, Greg Gloor is working on developing a targeted molecular weapon that will combat only ...

Solving of a decade long mystery could help in fight against tuberculosis

November 1, 2017
Scientists have solved a decade-old mystery that could eventually lead to the development of earlier treatments for one of the world's deadliest diseases, which affects up to 2 billion people.

Mass spectrometry helps researchers 'watch' how antibiotics attack tuberculosis bacteria inside cells

November 1, 2012
Weill Cornell Medical College researchers report that mass spectrometry, a tool currently used to detect and measure proteins and lipids, can also now allow biologists to "see" for the first time exactly how drugs work inside ...

Tuberculosis and Parkinson's disease linked by unique protein

September 4, 2013
A protein at the center of Parkinson's disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to scientists led by UC San Francisco microbiologist ...

Tuberculosis bacteria build 'edible' havens in immune cells

April 18, 2016
Bacteria that cause tuberculosis trick immune cells meant to destroy them into hiding and feeding them instead. This is the result of a study led by researchers from NYU Langone Medical Center and published online April 18 ...

New hope in the fight against tuberculosis

June 4, 2015
According to figures of the World Health Organization, some 8.7 million people contracted tuberculosis in 2012 and this disease is fatal for approximately 1.3 million people throughout the world each year. One of the main ...

Recommended for you

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

Dengue takes low and slow approach to replication

January 11, 2018
A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Different strains of same bacteria trigger widely varying immune responses

January 11, 2018
Genetic differences between different strains of the same pathogenic bacterial species appear to result in widely varying immune system responses, according to new research published in PLOS Pathogens.

Human protein may aid neuron invasion by virus that causes hand, foot, and mouth disease

January 11, 2018
A human protein known as prohibitin may play a significant role in infection of the nervous system by EV71, one of several viruses that can cause hand, foot, and mouth disease. Issac Too of the National University of Singapore ...

Untangling how Epstein-Barr virus infects cells

January 11, 2018
A team led by scientists at Northwestern Medicine has discovered a new epithelial receptor for Epstein-Barr virus, according to a study published recently in Nature Microbiology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.