Cornell researcher seeks clues to how tuberculosis infects cells

December 21, 2007

Cornell researchers are using advanced genetic techniques to better understand the relationship between the bacteria that cause tuberculosis and the human immune system defense cells that engulf them.

The researchers have discovered that unlike many bacterial pathogens, Mycobacterium tuberculosis does not react when immune system cells called macrophages initially make contact; but the bacterium's genes become activated minutes after the pathogen is enveloped by a macrophage and contained in one of its membrane-bound compartments called vacuoles.

David Russell, professor of molecular microbiology at Cornell's College of Veterinary Medicine, and colleagues reported in a November issue of the journal Cell Host and Microbe, that increased acidity inside the vacuoles containing the bacteria serves as the trigger for M. tuberculosis genes to express proteins.

The study also compared the responses of M. tuberculosis to a live bacterial vaccine against tuberculosis known as Bacillus Calmette-Guerin (BCG). It found that the two bacteria may each respond differently to the same stimuli and that BCG appears less capable of protecting itself once inside a macrophage. The findings are consistent with the reduced virulence of BCG, which is key to its safety as a vaccine.

The study is a small part of a larger plan to understand the processes that allow the bacteria to survive within macrophages and then to use that knowledge to develop more effective drugs to fight tuberculosis, which currently kills 2 million people worldwide each year. Existing drugs require six to nine months to treat the active disease that invades and replicates within the lungs.

"What we propose is the exploitation of the data obtained from these basic science studies to develop a comprehensive program of drug development that targets bacterial processes critical to survival inside the human host," said Russell.

Russell's lab used gene chips, or microarrays, to identify genes activated under specific environmental conditions. This allowed them to generate real-time readouts of bacterial health and their response to stress. The researchers have also created real-time readouts that measure conditions within the tuberculosis-containing vacuole at any time during the immune system's process.

"Our goal is to develop these bacterial fitness readouts to screen small molecule libraries for compounds that will kill M. tuberculosis inside the macrophage," said Russell. "Unfortunately, Cornell does not have either the instrumentation or the chemical libraries necessary to do this work, so I am trying different, private funding agencies to get the support to purchase equipment and libraries."

Source: Cornell University Communications

Explore further: A 'release and kill' strategy may aid treatment of tuberculosis

Related Stories

Tuberculosis and Parkinson's disease linked by unique protein

September 4, 2013

A protein at the center of Parkinson's disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to scientists led by UC San Francisco microbiologist ...

Tuberculosis bacteria build 'edible' havens in immune cells

April 18, 2016

Bacteria that cause tuberculosis trick immune cells meant to destroy them into hiding and feeding them instead. This is the result of a study led by researchers from NYU Langone Medical Center and published online April 18 ...

New hope in the fight against tuberculosis

June 4, 2015

According to figures of the World Health Organization, some 8.7 million people contracted tuberculosis in 2012 and this disease is fatal for approximately 1.3 million people throughout the world each year. One of the main ...

Recommended for you

Potential new treatment for kidney failure in cancer patients

April 25, 2017

Kidney dysfunction is a frequent complication affecting more than 50 percent of all cancer patients, and is directly linked to poor survival. Despite the high occurrence, it is still not clear how presence of a tumour contributes ...

Patients with drug-resistant malaria cured by plant therapy

April 24, 2017

When the standard malaria medications failed to help 18 critically ill patients, the attending physician in a Congo clinic acted under the "compassionate use" doctrine and prescribed a not-yet-approved malaria therapy made ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.