Some antipsychotic drugs may be missing their mark

January 1, 2008

Drugs that treat depression, schizophrenia and other psychotic conditions and that target a particular protein on brain cells might not be triggering the most appropriate response in those cells, new research suggests.

The study by researchers at The Ohio State University Medical Center examined the serotonin 2A receptor, a protein on brain cells sensitive to the neurotransmitter serotonin.

This study examined the early chemical events that happen inside neurons when the 2A receptor is stimulated by serotonin and by a synthetic hallucinogenic agent that is thought to mimic serotonin.

The findings, published online in the early edition of the Proceedings of the National Academy of Sciences with an accompanying editorial, show that although both compounds combine with and activate this receptor, they trigger different chemical pathways inside the neuron.

Researchers say that the work could have important implications for the development of drugs that affect the serotonin 2A receptor, a key target in the treatment of several important mental disorders.

“This new insight into how serotonin and a hallucinogenic drug affect this serotonin receptor could lead to changes in how new drugs are screened and developed for depression, schizophrenia and other neuropsychiatric disorders,” says study leader Laura M. Bohn, an associate professor of pharmacology and psychiatry.

Currently, it is thought that when serotonin binds with the receptor, it sends a signal that activates molecules inside the cell called G proteins.

This study shows, however, that the receptor responds to serotonin by also activating a protein called beta-arrestin inside the cell. The synthetic hallucinogen, on the other hand, causes the receptor to activate only the G proteins. The hallucinogen does not seem to use beta-arrestins to cause its effects.

For this study, Bohn and her colleagues used laboratory-grown cells and a strain of mice that lacked beta-arrestin. The hallucinogen was a hallucinogenic amphetamine called DOI.

When the researchers injected normal (i.e., control) and experimental mice with DOI, both groups showed a head-twitch behavior, a characteristic response in mice to hallucinogens.

But when the mice were given high doses of serotonin, which typically also causes the head-twitch behavior, the behavior occurred in the control animals only, and not in the mice lacking beta-arrestin.

“That demonstrates that the signal for serotonin requires beta-arrestin for that biological effect,” Bohn says. “The synthetic hallucinogen, on the other hand, induces the head-twitch behavior whether beta-arrestin is present or not.

“Overall, our findings suggest that the screening of agents intended to be serotonin mimics must also determine if the agent signals through beta-arrestin,” Bohn says. “That isn’t done now.”

Source: Ohio State University

Explore further: The quest by parents and scientists to end pediatric epilepsy

Related Stories

Gut microorganisms affect our physiology

December 29, 2016

Researchers have found evidence that could shed new light on the complex community of trillions of microorganisms living in all our guts, and how they interact with our bodies.

In the brain, broken down 'motors' cause anxiety

February 7, 2013

When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting ...

Serotonin could play a large role in bone loss

February 21, 2012

Scientists have long known that calcium leaches from the bones both during lactation and in certain types of cancer. The driver behind these phenomena is a molecule called parathyroid hormone related protein (PTHrP), which ...

Serotonin-deficient brains more vulnerable to social stress

February 9, 2015

Mice genetically deficient in serotonin—a crucial brain chemical implicated in clinical depression—are more vulnerable than their normal littermates to social stressors, according to a Duke study appearing this week in ...

Recommended for you

Resveratrol may be an effective intervention for lung aging

February 22, 2017

In a study led by Barbara Driscoll, PhD, of The Saban Research Institute of Children's Hospital Los Angeles, researchers demonstrate, for the first time that inhaled resveratrol treatments slow aging-related degenerative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.