Some antipsychotic drugs may be missing their mark

January 1, 2008

Drugs that treat depression, schizophrenia and other psychotic conditions and that target a particular protein on brain cells might not be triggering the most appropriate response in those cells, new research suggests.

The study by researchers at The Ohio State University Medical Center examined the serotonin 2A receptor, a protein on brain cells sensitive to the neurotransmitter serotonin.

This study examined the early chemical events that happen inside neurons when the 2A receptor is stimulated by serotonin and by a synthetic hallucinogenic agent that is thought to mimic serotonin.

The findings, published online in the early edition of the Proceedings of the National Academy of Sciences with an accompanying editorial, show that although both compounds combine with and activate this receptor, they trigger different chemical pathways inside the neuron.

Researchers say that the work could have important implications for the development of drugs that affect the serotonin 2A receptor, a key target in the treatment of several important mental disorders.

“This new insight into how serotonin and a hallucinogenic drug affect this serotonin receptor could lead to changes in how new drugs are screened and developed for depression, schizophrenia and other neuropsychiatric disorders,” says study leader Laura M. Bohn, an associate professor of pharmacology and psychiatry.

Currently, it is thought that when serotonin binds with the receptor, it sends a signal that activates molecules inside the cell called G proteins.

This study shows, however, that the receptor responds to serotonin by also activating a protein called beta-arrestin inside the cell. The synthetic hallucinogen, on the other hand, causes the receptor to activate only the G proteins. The hallucinogen does not seem to use beta-arrestins to cause its effects.

For this study, Bohn and her colleagues used laboratory-grown cells and a strain of mice that lacked beta-arrestin. The hallucinogen was a hallucinogenic amphetamine called DOI.

When the researchers injected normal (i.e., control) and experimental mice with DOI, both groups showed a head-twitch behavior, a characteristic response in mice to hallucinogens.

But when the mice were given high doses of serotonin, which typically also causes the head-twitch behavior, the behavior occurred in the control animals only, and not in the mice lacking beta-arrestin.

“That demonstrates that the signal for serotonin requires beta-arrestin for that biological effect,” Bohn says. “The synthetic hallucinogen, on the other hand, induces the head-twitch behavior whether beta-arrestin is present or not.

“Overall, our findings suggest that the screening of agents intended to be serotonin mimics must also determine if the agent signals through beta-arrestin,” Bohn says. “That isn’t done now.”

Source: Ohio State University

Explore further: New drug shows potential as a different kind of antidepressant in mouse trials

Related Stories

New drug shows potential as a different kind of antidepressant in mouse trials

November 6, 2017
A potential new antidepressant and antianxiety treatment with a unique mechanism of action has been developed by scientists at the University of Bath.

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Serotonin receptor is involved in eczema and other itch conditions

June 11, 2015
Dermatologists have long known that available treatments for chronic itch, including eczema, are simply not up to scratch. But scientists have now discovered a new gene that promotes itch, suggesting a way forward for powerful ...

Team identifies weight-gain receptor linked to antipsychotic drugs

August 15, 2017
Many schizophrenic and depressed patients experience weight gain and type 2 diabetes in their quests for the life-changing benefits of a major class of antipsychotic drugs.

In the brain, broken down 'motors' cause anxiety

February 7, 2013
When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting ...

Serotonin could play a large role in bone loss

February 21, 2012
Scientists have long known that calcium leaches from the bones both during lactation and in certain types of cancer. The driver behind these phenomena is a molecule called parathyroid hormone related protein (PTHrP), which ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.