New route for heredity bypasses DNA

January 4, 2008
New route for heredity bypasses DNA
Princeton's Laura Landweber and Vikram Vijayan examine different species of ciliates swimming and dividing under the microscope. Credit: Princeton University/Landweber lab

A group of scientists in Princeton's Department of Ecology and Evolutionary Biology has uncovered a new biological mechanism that could provide a clearer window into a cell's inner workings.

What's more, this mechanism could represent an "epigenetic" pathway -- a route that bypasses an organism's normal DNA genetic program -- for so-called Lamarckian evolution, enabling an organism to pass on to its offspring characteristics acquired during its lifetime to improve their chances for survival. Lamarckian evolution is the notion, for example, that the giraffe's long neck evolved by its continually stretching higher and higher in order to munch on the more plentiful top tree leaves and gain a better shot at surviving.

The research also could have implications as a new method for controlling cellular processes, such as the splicing order of DNA segments, and increasing the understanding of natural cellular regulatory processes, such as which segments of DNA are retained versus lost during development. The team's findings will be published Jan. 10 in the journal Nature.

Princeton biologists Laura Landweber, Mariusz Nowacki and Vikram Vijayan, together with other members of the lab, wanted to decipher how the cell accomplished this feat, which required reorganizing its genome without resorting to its original genetic program. They chose the singled-celled ciliate Oxytricha trifallax as their testbed.

Ciliates are pond-dwelling protozoa that are ideal model systems for studying epigenetic phenomena. While typical human cells each have one nucleus, serving as the control center for the cell, these ciliate cells have two. One, the somatic nucleus, contains the DNA needed to carry out all the non-reproductive functions of the cell, such as metabolism. The second, the germline nucleus, like humans' sperm and egg, is home to the DNA needed for sexual reproduction.

When two of these ciliate cells mate, the somatic nucleus gets destroyed, and must somehow be reconstituted in their offspring in order for them to survive. The germline nucleus contains abundant DNA, yet 95 percent of it is thrown away during regeneration of a new somatic nucleus, in a process that compresses a pretty big genome (one-third the size of the human genome) into a tiny fraction of the space. This leaves only 5 percent of the organism's DNA free for encoding functions. Yet this small hodgepodge of remaining DNA always gets correctly chosen and then descrambled by the cell to form a new, working genome in a process (described as "genome acrobatics") that is still not well understood, but extremely deliberate and precise.

Landweber and her colleagues have postulated that this programmed rearrangement of DNA fragments is guided by an existing "cache" of information in the form of a DNA or RNA template derived from the parent's nucleus. In the computer realm, a cache is a temporary storage site for frequently used information to enable quick and easy access, rather than having to re-fetch or re-create the original information from scratch every time it's needed.

"The notion of an RNA cache has been around for a while, as the idea of solving a jigsaw puzzle by peeking at the cover of the box is always tempting," said Landweber, associate professor of ecology and evolutionary biology. "These cells have a genomic puzzle to solve that involves gathering little pieces of DNA and putting them back together in a specified order. The original idea of an RNA cache emerged in a study of plants, rather than protozoan cells, though, but the situation in plants turned out to be incorrect."

Through a series of experiments, the group tested out their hypothesis that DNA or RNA molecules were providing the missing instruction booklet needed during development, and also tried to determine if the putative template was made of RNA or DNA. DNA is the genetic material of most organisms, however RNA is now known to play a diversity of important roles as well. RNA is DNA's chemical cousin, and has a primary role in interpreting the genetic code during the construction of proteins.

First, the researchers attempted to determine if the RNA cache idea was valid by directing specific RNA-destroying chemicals, known as RNAi, to the cell before fertilization. This gave encouraging results, disrupting the process of development, and even halting DNA rearrangement in some cases.

In a second experiment, Nowacki and Yi Zhou, both postdoctoral fellows, discovered that RNA templates did indeed exist early on in the cellular developmental process, and were just long-lived enough to lay out a pattern for reconstructing their main nucleus. This was soon followed by a third experiment that "… required real chutzpah," Landweber said, "because it meant reprogramming the cell to shuffle its own genetic material."

Nowacki, Zhou and Vijayan, a 2007 Princeton graduate in electrical engineering, constructed both artificial RNA and DNA templates that encoded a novel, pre-determined pattern; that is, that would take a DNA molecule of the ciliate's consisting of, for example, pieces 1-2-3-4-5 and transpose two of the segments, to produce the fragment 1-2-3-5-4. Injecting their synthetic templates into the developing cell produced the anticipated results, showing that a specified RNA template could provide a new set of rules for unscrambling the nuclear fragments in such a way as to reconstitute a working nucleus.

"This wonderful discovery showed for the first time that RNA can provide sequence information that guides accurate recombination of DNA, leading to reconstruction of genes and a genome that are necessary for the organism," said Meng-Chao Yao, director of the Institute of Molecular Biology at Taiwan's Academia Sinica. "It reveals that genetic information can be passed on to following generations via RNA, in addition to DNA."

The research team believes that if this mechanism extends to mammalian cells, then it could suggest novel ways for manipulating genes, besides those already known through the standard methods of genetic engineering. This could lead to possible applications for creating new gene combinations or restoring aberrant cells to their original, healthy state.


Source: Princeton University

Explore further: Updated brain cell map connects various brain diseases to specific cell types

Related Stories

Updated brain cell map connects various brain diseases to specific cell types

December 11, 2017
Researchers have developed new single-cell sequencing methods that could be used to map the cell origins of various brain disorders, including Alzheimer's, Parkinson's, schizophrenia and bipolar disorder.

For the first time, researchers control cells' chromatin to prevent cancer from adapting to treatment

November 6, 2017
Northwestern Engineering's Vadim Backman has developed an effective new strategy for treating cancer, which has wiped out the disease to near completion in cellular cultures in the laboratory.

Bioinformatics points the way to treating deadly pancreatic cancer

September 25, 2017
A new study that sifted through an enormous mass of biomolecular data has significantly advanced our understanding of the genetics of pancreatic cancer and opened up promising treatment avenues.

'Detective' iSHiRLoC investigates role of RNA, could help researchers study genesis of cancer

April 19, 2017
A team of University of Michigan scientists have developed a tool to help them study dysfunction in cells by tracking a molecule called microRNA, possibly giving them a way to determine how cancer occurs and spreads in the ...

For first time, scientists use CRISPR-Cas9 to target RNA in live cells

March 17, 2016
The genetic code stored in DNA determines everything from the color of our eyes to our susceptibility to disease. This has motivated scientists to sequence the human genome and develop ways to alter the genetic code, but ...

Regulatory RNA essential to DNA damage response

September 26, 2016
Stanford researchers have found that a tumor suppressor known as p53 is stabilized by a regulatory RNA molecule called DINO. The interaction helps a cell respond to DNA damage and may play a role in cancer development and ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
2 / 5 (1) Jan 05, 2008
Wouldn't this discovery give rise to the ultimate bio-weapon? After all, what's to prevent someone from mkaing an RNA based pathogen weapon which is designed to select its victim based on race or some other hereditary factor?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.