Location matters, even for genes

February 13, 2008

Moving an active gene from the interior of the nucleus to its periphery can inactivate that gene report scientists from the University of Chicago Medical Center in an article to be published early online Feb.13, 2008, in the journal Nature.

Attachment to the inner nuclear membrane, they show, can silence genes, preventing their transcription--a novel form of gene regulation.

"Several years ago, we and others described the correlation between nuclear positioning and gene activation," said study author Harinder Singh, Louis Block Professor of Molecular Genetics and Cell Biology and an Investigator in the Howard Hughes Medical Institute at the University of Chicago.

"With that in mind, we wanted to take the next step, to design an experiment that could test causality. Could we move a gene from the center of the nucleus to the periphery, we asked, and then measure the consequences of such repositioning?"

In mammalian nuclei, chromatin--a complex of DNA and associated proteins--is organized into structural domains through interactions with distinct nuclear compartments. In this study, the authors developed the molecular tools to take specific genes from these interior compartments, move them to the periphery and attach them to the nuclear membrane--which turned those genes off.

Not only were selected "test" genes that served as markers turned off after being attached to the inner nuclear membrane, but also nearby "real" genes.

Singh’s laboratory had become interested in studying the role of nuclear postioning in the control of gene activity based on work analyzing immunoglobulin heavy-chain genes. These genes are assembled by DNA recombination and code for proteins that are a crucial part of antibodies, produced in antibody-secreting lymphocytes or B-cells.

"In cells that don’t produce antibodies, like fibroblasts or T-cells, these antibody genes are attached to the inner nuclear membrane and are not recombined or expressed," said Singh.

On the other hand, antibody genes are actively transcribed and recombined in developing B-cells, and therefore positioned in the nuclear interior, far away from the periphery.

Five years ago, Singh and colleagues reported in Science that even in developing B cells, antibody genes start off at the nuclear periphery. As young cells mature and prepare to produce antibodies, however, these genes move to the interior of the nuclei.

The exact ways in which positioning at the outer edge of the nucleus prevents gene expression are still unclear. The likely suspects, said Singh, are some of proteins that reside in the inner nuclear membrane.

These proteins may be involved in blocking transcription, he said. They accumulate at sites of attachment and come in contact with parts of certain silenced genes. "So we think that these proteins are part of the molecular machinery that is used for positioning genes at the inner nuclear membrane, as well as potentially for repressing them,” he said.

In their Nature paper, Singh's team also showed for the first time that this transcriptional repression was dependent on breakdown and reformation of the nuclear membrane during cell division.

The reorganizing of chromosomes occurs when cells divide. "This suggests that cell division is used not only to transmit the genetic information into daughter cells and create two equivalent cells," he said, "but it is also an opportunity for cells to reorganize their genomes in 3D space, sequestering parts of the genome at the nuclear periphery and rendering it inaccessible to transcription.”

Singh and colleagues are now looking for examples of striking reorganization of the genome separated by one cell division--in which active genes, that will not be active after the cell divides, get pushed away from the interior to the periphery.

The lead author, Karen Reddy, a postdoctoral fellow in the Singh laboratory, proposes that, such compartmentalization "implies the existence of DNA segments that encode for ‘nuclear addresses’ acting like a nuclear zip code to direct or predispose genes to associate with specific regions within the nucleus. This could be tremendously important," she said, "for understanding the underlying cause of some diseases that result from mutations in genes encoding inner nuclear membrane proteins."

Source: University of Chicago

Explore further: New way to target the growth of breast cancer cells

Related Stories

New way to target the growth of breast cancer cells

January 18, 2018
An international team of researchers led from Karolinska Institutet and Science for Life Laboratory in Sweden have found a new way of halting the growth of breast cancer cells. In their study, which is published in Nature ...

Potential new treatment identified for drug-resistant skin cancer

February 6, 2018
Stanford researchers have learned how basal cell carcinoma evades drug treatment without mutating. The researchers found possible drug targets that may allow for more personalized treatment of this common skin cancer.

Finding the root cause of bronchiolitis symptoms

January 25, 2018
Every winter, doctors' offices and hospital emergency rooms fill with children who have bronchiolitis, an inflammation of the small airways in the lung. It's responsible for about 130,000 admissions each year. Sometimes these ...

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Multifunctional protein contributes to blood cell development

December 21, 2017
Like an actor who excels at both comedy and drama, proteins also can play multiple roles. Uncovering these varied talents can teach researchers more about the inner workings of cells. It also can yield new discoveries about ...

Gaining insight into the molecular mechanisms behind squamous cell cancer

December 19, 2017
Researchers at Kanazawa University report in EMBO Reports about a new molecular mechanism regulating cellular fate of squamous cell carcinomas. Squamous cell carcinoma (SCC) is a lethal cancer arising from the stratified ...

Recommended for you

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.