Pain receptor in brain may be linked to learning and memory

March 13, 2008

Scientists have long known that the nervous system receptor known as TRPV1 can affect sensations of pain in the body. Now a group of Brown University scientists has found that these receptors – a darling of drug developers – also may play a role in learning and memory in the brain.

In surprising new research, published in the journal Neuron, Julie Kauer and her team show that activation of TPRV1 receptors can trigger long-term depression, a phenomenon that creates lasting changes in the connections between neurons. These changes in the brain – and the related process of neural reorganization known as long-term potentiation – are believed to be the cellular basis for memory making.

“We’ve known that TRPV1 receptors are in the brain, but this is some of the first evidence of what they actually do there,” Kauer said. “And the functional role we uncovered is unexpected. No one has previously linked these pain receptors to a cellular mechanism underlying memory. So we may have found a whole new player in brain plasticity.”

The study findings have implications for drug development, Kauer said.

The research points out potentially effective new targets for drugs that could prevent memory loss or could possibly treat neural disorders such as epilepsy, Kauer said. The other implication may be cautionary. Drug makers already sell drugs – such as the weight-loss pill rimonabant, which is sold in Europe under the name Acomplia – that can block TRPV1 receptors. Other drugs aimed at reducing pain and inflammation by blocking or activating TRPV1 receptors are in the research pipeline. But drugs that bind to TRPV1 receptors in the central nervous system are likely to influence more than just pain-related functions, Kauer said.

“Our findings suggest the possibility that some of the psychiatric side effects from rimonabant could be due to the blocking of TRPV1 receptors,” she said.

TRPV1, short for transient receptor potential vanilloid subtype, can be found all over the nervous system, including in skin, the spinal cord and the brain. These receptors can sense heat, trigger inflammation and transmit pain. TRPV1 receptors not only respond to heat but also to capsaicin, the compound that creates the spicy kick in chili peppers.

In her study, Kauer, professor of medical science in the Department of Molecular Pharmacology, Physiology and Biotechnology at Brown, treated rat brain tissue from the hippocampus, the brain’s seat of learning and memory, with capsaicin. The team found that this compound activated TRPV1 channels – which alone triggered long-term depression in the brain tissue. Further, rimonabant entirely blocked long-term depression by blocking TRPV1 channels.

The team then tested brain tissue from mice that lacked TRPV1 receptors and found that long-term depression was absent – and that applying capsaicin still couldn’t elicit the changes to the synapses.

Source: Brown University

Explore further: 'Protective shield' for beta-cells suggests new option to treat diabetes

Related Stories

'Protective shield' for beta-cells suggests new option to treat diabetes

June 21, 2017
The islets of Langerhans in the human pancreas produce and release insulin to regulate blood glucose levels. Insulin, which is specifically produced in b-cells, serves to prompt cells to take up glucose circulating in blood. ...

Neural precursor cells induce cell death in certain brain tumors

July 23, 2012
Neural precursor cells (NPC) in the young brain suppress certain brain tumors such as high-grade gliomas, especially glioblastoma (GBM), which are among the most common and most aggressive tumors. Now researchers of the Max ...

Discovery advances our understanding of how our brain controls body hydration and temperature

October 15, 2015
Scientists at the Research Institute of the McGill University Health Centre (RI-MUHC) and Duke University have made a breakthrough that advances our understanding of how the brain detects and prevents dehydration. They have ...

Scientists discover pain receptor on T-cells

October 5, 2014
Researchers at University of California, San Diego School of Medicine have discovered that T-cells – a type of white blood cell that learns to recognize and attack microbial pathogens – are activated by a pain receptor.

Using magnetic forces to control neurons, study finds brain is vital in glucose metabolism

March 23, 2016
To learn what different cells do, scientists switch them on and off and observe what the effects are. There are many methods that do this, but they all have problems: too invasive, or too slow, or not precise enough. Now, ...

Long-sought 'warm-sensitive' brain cells identified in new study

September 9, 2016
A new UC San Francisco study challenges the most influential textbook explanation of how the mammalian brain detects when the body is becoming too warm, and how it then orchestrates the myriad responses that animals, including ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
1 / 5 (1) Mar 14, 2008
Of course pain and learning are linked. If we don't learn fast to avoid painfull events, we might not survive long enough to experience pleasure.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.