The yin and yang of genes for mood disorders

March 12, 2008

Individual genes do not cause depression, but they are thought to increase the probability of an individual having a depression in the face of other accumulating risk factors, such as other genes and environmental stressors.

One gene that has been shown to increase the risk for depression in the context of multiple stressful life events is the gene for the serotonin transporter protein. This gene is responsible for making the protein that is targeted by all current drug treatments for depression. In a number of studies it has been shown that people who inherit one form of this gene, called SLC6A4, are at up to four times the risk of depression if they experience unusual stresses in their lives.

Basic science experiments and imaging studies in normal people suggest that the way this form of the gene affects risk for depression is by impacting on the development of a system in the brain that mediates how negative environmental stresses and threats feel. The effects of this serotonin gene on this brain system are thought to occur early in development, where the shaping of brain systems related to how the environment is experienced emotionally is critically determined.

Basic science experiments have shown that another gene, called BDNF, regulates the expression of a protein that is important for the ability of the serotonin gene to cause these developmental effects. The BNDF gene plays a critical role in allowing the serotonin gene to have its affect on brain development.

Interestingly, the BDNF gene also has been found to be a risk factor for mood disorders and is thought to be important in mediating the effects of antidepressant drugs. Thus, given the basic molecular link between SLC56A4 and BDNF, and the potential that risk for depression might be better understood in the context of these two genes together rather than any one of them alone, investigators now have looked at how inheriting different combinations of forms of these two gene would impact on the development of this emotion regulation system in the brain.

They found that in normal subjects the deleterious impact of the serotonin gene on the development of this brain system was critically dependent on which form of the BDNF gene was also inherited. If an individual inherited one form of the BDNF gene, they were particularly susceptible to the deleterious form of the serotonin gene but if they inherited the other form of the BDNF gene, they were completely protected against it.

This study is the first to show the complex interactions that occur between mood disorder related genes and their impact on mood disorder related brain circuitry. The study makes it clear that individual genes have to be viewed in a context, both a genetic and an environmental context.

But the results also illustrate that no one gene is an island unto itself, and the impact that any gene will have on complex condition like mental illnesses will depend on how that gene interacts with other genes sharing biological overlap. This study also makes it clear why individuals genes do not show stronger effects on predicting complex illnesss like depression, because risk is based on the combinatorial effects of interacting risk factors.

Source: Molecular Psychiatry

Explore further: Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

Related Stories

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

Genetic analysis can improve depression therapy

January 12, 2018
The failure of drugs such as SSRIs, used to treat depression, can be a result of genetic variations in patients. Variations within the gene that encodes the CYP2C19 enzyme results in extreme differences in the levels of escitalopram ...

Epileptic seizures and depression may share a common genetic cause, study suggests

January 10, 2018
From the time of Hippocrates, physicians have suspected a link between epilepsy and depression. Now, for the first time, scientists at Rutgers University-New Brunswick and Columbia University have found evidence that seizures ...

Stress gene regulates brain cell power and connections in rodents

January 2, 2018
A gene activated by stress adjusts energy output and synapse number of prefrontal cortex neurons, finds a study of male mice and rats published in JNeurosci. The results were validated in brain tissue of deceased patients ...

Getting the right treatment: Predicting treatment response in depression

December 28, 2017
New evidence from mice suggests why an antidepressant treatment can alleviate depression in one person but not another. The study, publishing December 28 in the open access journal PLOS Biology, was led by Marianne Müller ...

Can road salt and other pollutants disrupt our circadian rhythms?

January 4, 2018
Every winter, local governments across the United States apply millions of tons of road salt to keep streets navigable during snow and ice storms. Runoff from melting snow carries road salt into streams and lakes, and causes ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.