Research findings open new front in fight against AIDS virus

April 28, 2008

A research group supported by the National Institutes of Health (NIH) has uncovered a new route for attacking the human immunodeficiency virus (HIV) that may offer a way to circumvent problems with drug resistance. In findings published today in the online edition of the Proceedings of the National Academy of Sciences, the researchers report that they have blocked HIV infection in the test tube by inactivating a human protein expressed in key immune cells.

Most of the drugs now used to fight HIV, which is the retrovirus that causes acquired immune deficiency syndrome (AIDS), target the virus’s own proteins. However, because HIV has a high rate of genetic mutation, those viral targets change quickly and lead to the emergence of drug-resistant viral strains. Doctors have tried to outmaneuver the rapidly mutating virus by prescribing multi-drug regimens or switching drugs. But such strategies can increase the risk of toxic side effects, be difficult for patients to follow and are not always successful. Recently, interest has grown in attacking HIV on a new front by developing drugs that target proteins of human cells, which are far less prone to mutations than are viral proteins.

In the new study, Pamela Schwartzberg, M.D., Ph.D., a senior investigator at the National Human Genome Research Institute (NHGRI), part of NIH; Andrew J. Henderson, Ph.D., of Boston University; and their colleagues found that when they interfered with a human protein called interleukin-2-inducible T cell kinase (ITK) they inhibited HIV infection of key human immune cells, called T cells. ITK is a signaling protein that activates T cells as part of the body’s healthy immune response.

“This new insight represents an important contribution to HIV research,” said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. “Finding a cellular target that can be inhibited so as to block HIV validates a novel concept and is an exciting model for deriving potential new HIV therapies.”

When HIV enters the body, it infects T cells and takes over the activities of these white blood cells so that the virus can replicate. Eventually, HIV infection compromises the entire immune system and causes AIDS. The new work shows that without active ITK protein, HIV cannot effectively take advantage of many signaling pathways within T cells, which in turn slows or blocks the spread of the virus.

“We were pleased and excited to realize the outcome of our approach,” Dr. Schwartzberg said. “Suppression of the ITK protein caused many of the pathways that HIV uses to be less active, thereby inhibiting or slowing HIV replication.”

In their laboratory experiments, the researchers used a chemical inhibitor and a type of genetic inhibitor, called RNA interference, to inactivate ITK in human T cells. Then, the T cells were exposed to HIV, and the researchers studied the effects of ITK inactivation upon various stages of HIV’s infection and replication cycle. Suppression of ITK reduced HIV’s ability to enter T cells and have its genetic material transcribed into new virus particles. However, ITK suppression did not interfere significantly with T cells’ normal ability to survive, and mice deficient in ITK were able to ward off other types of viral infection, although antiviral responses were delayed.

“ITK turns out to be a great target to examine,” said Dr. Schwartzberg, noting that researchers had been concerned that blocking other human proteins involved in HIV replication might kill or otherwise impair the normal functions of T cells.

According to Dr. Schwartzberg, ITK already is being investigated as a therapeutic target for asthma and other diseases that affect immune response. In people with asthma, ITK is required to activate T cells, triggering lung inflammation and production of excess mucus.

“There are several companies who have published research about ITK inhibitors as part of their target program,” Schwartzberg said. “We hope that others will extend our findings and that ITK inhibitors will be pursued as HIV therapies.”

Source: National Human Genome Research Institute

Related Stories

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.