Researchers show antibody to breast cancer-secreted protein blocks metastasis

July 8, 2008

Scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have made a key discovery about the mechanism of breast cancer metastasis, the process by which cancer spreads. Focusing on a gene dubbed "Dachshund," or DACH1, they are beginning to pinpoint new therapeutic targets to halt the spread of cancer.

Reporting their findings in the Proceedings of the National Academy of Sciences, researchers led by Richard Pestell, M.D., Ph.D., director of the Kimmel Cancer Center at Jefferson and professor and chair of Cancer Biology at Jefferson Medical College, showed that breast cancer cells secrete a common inflammatory protein, IL-8. When the scientists blocked the protein in mice with an antibody, they found that it completely halted the spread of breast cancer to the lungs.

In addition, the team found that the DACH1 gene normally blocks the production of IL-8.

"This is a very important study by Dr. Pestell and his colleagues that demonstrates that the protein dachshund blocks metastasis in a mouse model and that this occurs through reduced production of the chemokine IL-8," says Max Wicha, M.D., director of the University of Michigan Comprehensive Cancer Center in Ann Arbor. "Interestingly reduced dachshund and increased IL-8 are associated with aggressive metastatic breast cancer in women. Our laboratory has found that IL-8 regulates breast cancer stem cells and that these cells mediate metastasis. Dr Pestell's work suggests that dachshund is a key regulator of this process."

DACH1 normally regulates eye development and development of other tissues, playing a role in determining the fate of some types of cells. In previous work, Dr. Pestell and his co-workers showed that DACH1 can commandeer cancer-causing genes and return them to normal. The team found evidence from more than 2,000 breast cancer patients that the more the gene is expressed in breast cancer, the better the patient did, enabling it to predict an individual's prognosis.

Because the researchers knew that DACH1 is lost in such invasive breast cancers that carry poor prognoses, they investigated its potential role in the cancer cells' ability to migrate and invade, the prelude to metastasis. They focused on its effects on cancer-causing oncogenes, such as Ras and Myc.

In a series of experiments, the scientists, led by Dr. Pestell and first author Kongming Wu, Ph.D., assistant professor of Cancer Biology at Jefferson Medical College, looked at the effects of adding DACH1 to breast cells made cancerous by various oncogenes. When they added DACH1 to Ras-induced breast cancer cells, for example, they saw a greater than 75 percent reduction in cell migration. Cells turned cancerous by the oncogene ErbB2 showed a 50 percent drop in migration. Cells made cancerous by Myc also had 50 percent less migration.

The researchers performed a proteomic analysis, testing the expression of many proteins at once to see which might be regulated by DACH1. They found that IL-8 is a critical target of DACH1 that helps regulate breast cancer cell migration and metastasis. In mouse studies, they showed that DACH1 lowered the levels of IL-8 genetic material (mRNA) by approximately 90 percent in cancers caused by Ras.

According to Dr. Wu, the gene for IL-8 is also a known target of Ras, helping recruit the formation of new blood vessels to feed a developing cancer – a process called angiogenesis. He notes that it's well known that tumors with high levels of IL-8 have a poorer clinical prognosis.

"The findings suggest an important role for IL-8 in blocking the progression of cancer and metastasis," says Dr. Wu. "Because IL-8 is a commonly found protein, it's possible to use this to block metastasis, perhaps eventually as a target for gene therapy."

Source: Thomas Jefferson University

Explore further: Researchers explain breast cancer resistance to hormone therapy and point to potential new therapies

Related Stories

Researchers explain breast cancer resistance to hormone therapy and point to potential new therapies

October 4, 2016
Despite the overall success of hormone therapy, breast cancer tumors in patients with metastatic disease often fail to respond. One new mechanism that can explain resistance to hormone therapy in breast cancer involves two ...

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.