Research identifies brain cells related to fear

July 11, 2008,

The National Institute of Mental Health estimates that in any given year, about
40 million adults (18 or older) will suffer from some form of anxiety disorder, including debilitating conditions such as phobias, panic disorders and post-traumatic stress disorder (PTSD). It is estimated that nearly 15 percent of U.S. soldiers returning from Iraq and Afghanistan develop PTSD, underscoring the urgency to develop better treatment strategies for anxiety disorders. These disorders can lead to myriad problems that hinder daily life – or ruin it altogether – such as drug abuse, alcoholism, marital problems, unemployment and suicide.

Functional imaging studies in combat veterans have revealed that the amygdala, a cerebral structure of the temporal lobe known to play a key role in fear and anxiety, is hyperactive in PTSD subjects.

Potentially paving the way for more effective treatments of anxiety disorders, a recent Nature report by Denis Paré, professor at the Center for Molecular and Behavioral Neuroscience at Rutgers University in Newark, has identified a critical component of the amygdala's neural network normally involved in the extinction, or elimination, of fear memories. Paré's laboratory studies the amygdala and how its activity impacts behavior. His research was published online by Nature on July 9, 2008 and is scheduled to appear in the print edition later in July.

Earlier research has revealed that in animals and humans, the amygdala is involved in the expression of innate fear responses, such as the fear of snakes, along with the formation of new fear memories as a result of experience, such as learning to fear the sound of a siren that predicts an air raid.

In the laboratory, the circuits underlying learned fear are typically studied using an experimental paradigm called Pavlovian fear conditioning. In this research model on rats, a neutral stimulus such as the sound of a tone elicited a fear response in the rats after they heard it paired with an noxious or unpleasant stimulus, such as a shock to the feet. However, this conditioned fear response was diminished with repetition of the neutral stimulus in the absence of the noxious stimulus. This phenomenon is known as extinction. This approach is similar to that used to treat human phobias, where the subject is presented with the feared object in the absence of danger.

Behavioral studies have demonstrated, however, that extinction training does not completely abolish the initial fear memory, but rather leads to the formation of a new memory that inhibits conditioned fear responses at the level of the amygdala. As such, fear responses can be expressed again when the conditioned stimulus is presented in a context other than the one where extinction training took place.

For example, suppose a rat is trained for extinction in a grey box smelling of roses, and later hears the tone again in a different box, with a different smell and appearance. The rat will show no evidence of having been trained for extinction. The tone will evoke as much fear as if the rat had not been trained for extinction.

"Extinction memory will only be expressed if tested in the same environment where the extinction training occurred, implying that extinction does not erase the initial fear memory but only suppresses it in a context-specific manner," notes Paré.

Importantly, it has been found that people with anxiety disorders exhibit an "extinction deficit," or a failure to "forget." However, until recently, the mechanisms of extinction have remained unknown.

As reported by Nature, Paré has found that clusters of amygdala cells, known as the intercalated (ITC) neurons, play a key role in extinction. His findings indicate that ITC cells inhibit amygdala outputs to the brain stem structures that generate fear responses. Indeed, Paré and his collaborators have shown that when ITC cells are destroyed with a targeted toxin in rats,
extinction memory is impeded, mimicking the behavior seen in PTSD.

Source: Rutgers University

Explore further: Do antidepressants impair the ability to extinguish fear?

Related Stories

Do antidepressants impair the ability to extinguish fear?

June 10, 2013
An interesting new report of animal research published in Biological Psychiatry suggests that common antidepressant medications may impair a form of learning that is important clinically.

Transplanted interneurons can help reduce fear in mice

December 8, 2016
The expression "once bitten, twice shy" is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists ...

Neuroscientists determine how treatment for anxiety disorders silences fear neurons

November 1, 2013
(Medical Xpress)—Excessive fear can develop after a traumatic experience, leading to anxiety disorders such as post-traumatic stress disorder and phobias. During exposure therapy, an effective and common treatment for anxiety ...

With altered brain chemistry, fear is more easily overcome

June 12, 2012
Researchers at Duke University and the National Institutes of Health have found a way to calm the fears of anxious mice with a drug that alters their brain chemistry. They've also found that human genetic differences related ...

First evidence that fear memories can be reduced during sleep

September 22, 2013
A fear memory was reduced in people by exposing them to the memory over and over again while they slept. It's the first time that emotional memory has been manipulated in humans during sleep, report Northwestern Medicine ...

Learning and unlearning to fear: The two faces of noradrenaline

September 18, 2017
Emotional learning can create strong memories and powerful emotional responses, but flexible behavior demands that these responses be inhibited when they are no longer appropriate. Scientists at the RIKEN Brain Science Institute ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.