Researchers link Huntington's disease to overactive immune response in the brain

July 16, 2008

(PhysOrg.com) -- The damage to brain tissue seen in Huntington's disease may be caused by an overactive immune response in the bloodstream and the brain, according to new findings from two teams of researchers at the University of Washington in Seattle and University College London. The findings were published online July 14 in the Journal of Experimental Medicine.

Working separately, the two teams found evidence in both brain cells and the bloodstream suggesting an important link between the immune system's response and Huntington's disease. Together, the findings may help scientists find biological markers for monitoring the disease progression earlier and with more accuracy, and could help them develop new treatments for the disease. Huntington's is a fatal inherited neurodegenerative disorder for which there is currently no effective treatment.

The UW team, lead by Dr. Thomas Moeller, research associate professor of neurology, had previously studied the role of inflammation and immune response in neurodegenerative diseases like Huntington's and ALS, also known as Lou Gehrig's disease. In this study, they found that patients with Huntington's had higher levels of immune-system signaling molecules, called cytokines, in their brain tissue.

The UW researchers then looked at a mouse-based model of the disease, studying the response of microglia, the immune cells of the nervous system. When the microglia were treated with a molecule triggering an immune response, the microglia from Huntington's mice produced much higher levels of cytokines, the immune system molecules. That finding suggests that the protein produced by the Huntington's disease genetic mutation, a protein called huntingtin, is causing the immune cells to be overactive. The researchers think that overly strong immune response may be the mechanism through which the disease causes damage to neurons in the brain.

"When we found increased levels of cytokines in the brains of Huntington's disease patients, we were very excited," Moeller said. "Inflammation in the brain has been increasingly recognized as an important component in other neurodegenerative diseases such as Alzheimer's or Parkinson's disease. These findings might open the door to novel therapeutic approaches for Huntington's disease that target inflammation."

The team at University College London focused their work on immune cells in the bloodstream, and found similar results linking the disease to the body's immune response.

"The similar effect in the blood of Huntington's patients suggests that we have discovered a new pathway in the disease by which the mutant protein could cause damage," Moeller explained. "The protein could be causing damage through an abnormally overactive immune system in both the blood and the brain. While damage from Huntington's is typically seen in the brain, this new pathway is quite easy to detect in the blood of patients, so we may have found a unique window from the blood into what the disease is doing in the brain."

The immune response in the blood may also help researchers use immune-system molecules as biological markers for the disease, which can be difficult to diagnose in early stages. Better tracking of Huntington's disease progression may help researchers to fine-tune interventions aimed at slowing the disease before it has affected as much brain tissue.

Huntington's affects an estimated 30,000 people in the United States. It is characterized by loss of motor control and cognitive functions, as well as by depression or other psychiatric problems.

Both the UW and University College London research projects were supported by CHDI, Inc., a nonprofit organization that provides funding for Huntington's disease research.

Proveded by University of Washington

Explore further: Researcher discovers commonalities in brains of people with HD and PD

Related Stories

Researcher discovers commonalities in brains of people with HD and PD

January 12, 2018
A new study strongly suggests that the brains of people who have died of Huntington's disease (HD) and Parkinson's disease (PD) show a similar response to a lifetime of neurodegeneration, despite being two very distinct diseases.

Immune cell migration is impeded in Huntington's disease

November 19, 2012
Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells ...

Researchers restore neuron function to brains damaged by Huntington's disease

May 29, 2012
Researchers from South Korea, Sweden, and the United States have collaborated on a project to restore neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent ...

Toxic protein build-up in blood shines light on Huntington's disease

September 17, 2012
A new light-based technique for measuring levels of the toxic protein that causes Huntington's disease (HD) has been used to demonstrate that the protein builds up gradually in blood cells. Published today in the Journal ...

Huntington's disease monkeys display full spectrum of symptoms seen in humans

July 21, 2016
Transgenic Huntington's disease monkeys display a full spectrum of symptoms resembling the human disease, ranging from motor problems and neurodegeneration to emotional dysregulation and immune system changes, scientists ...

Leading researchers report on the elusive search for biomarkers in Huntington's disease

May 20, 2013
While Huntington's disease (HD) is currently incurable, the HD research community anticipates that new disease-modifying therapies in development may slow or minimize disease progression. The success of HD research depends ...

Recommended for you

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.