Symbiotic microbes induce profound genetic changes in their hosts

July 28, 2008

Though bacteria are everywhere — from the air we breathe and the food we eat to our guts and skin — the vast majority are innocuous or even beneficial, and only a handful pose any threat to us. What distinguishes a welcome microbial guest from an unwanted intruder?

Research from the University of Wisconsin-Madison suggests the answer lies not with the bacteria, but with the host.

A study appearing online this week in the Proceedings of the National Academy of Sciences may help reveal what sets a platonic relationship apart from a pathogenic one. In the paper, researchers from the UW-Madison School of Medicine and Public Health and the University of Iowa identify a slew of microbe-induced genetic changes in a tiny squid, including a set of evolutionarily conserved genes that may hold the secrets to developing a mutually beneficial relationship.

"Interactions of animals with their microbiota have a profound impact on their gene expression, and to create a stable association with a microorganism requires a lot of conversation between the microbe and the host," says UW-Madison medical microbiologist Margaret McFall-Ngai, senior author of the new study.

Many studies have focused on the bacterial side of that conversation. But aside from a few "professional pathogens," like the bubonic plague-causing Yersinia pestis, most bacteria are not inherently good or bad, McFall-Ngai says. Instead, bacterial effects are highly context-dependent: She reported in 2004 that a common bacterial "toxin" — which causes tissue damage under some circumstances — also plays a critical role in host tissue development.

She now suggests that the outcome may rely on how the host itself responds to the bacterium. Problems most often arise when a normal balance is disrupted, she says. "A lot of these pathogens are just at the wrong place at the wrong time."

To listen into the animal-microbe conversation, McFall-Ngai takes advantage of a relatively simple host-bacterium relationship: the Hawaiian bobtail squid, a colorful critter less than two inches long that nurtures a single type of light-producing bacteria, called Vibrio fischeri. The bacteria take up residence in a specialized pouch on the squid's belly and produce light that the squid uses as anti-predator camouflage. In return, the bacteria receive easy access to nutrients from the squid.

In the new study, a team led by former UW-Madison graduate student Carlene Chun dissected the genetics of the squid host response, including a comparison with mutant bacteria unable to successfully colonize their host. They identified hundreds of genes affected by the establishment of a stable bacterial partnership, including some known to play a role in human responses to bacteria.

The involvement of several genes typically associated with responses to bacterial infection, such as members of common immune signaling pathways, suggests we may need to rethink our understanding of the main purpose of the immune system, McFall-Ngai says.

"We have thousands of bacteria that live with us, and yet there are only around 100 bacterial pathogens," she says. Given the numbers, "it seems like these pathways and these molecules are likely to be 'symbiosis' pathways more than 'anti-pathogen.'"

Her team also highlighted several genes corresponding to those previously implicated in establishing symbiotic relationships with gut bacteria in fish and mice, suggesting that the animal-bacteria conversation may be basically the same across evolution.

"All animals and plants evolved in the background of the presence of huge numbers of environmental bacteria… These genes might be considered the core conserved responses of animals to interactions with bacteria" along tissue surfaces like intestine walls and skin, McFall-Ngai says. "The language is ancient and highly conserved."

Source: University of Wisconsin-Madison

Explore further: A new test to measure the effectiveness of CF drugs

Related Stories

A new test to measure the effectiveness of CF drugs

November 16, 2017
UNC School of Medicine researchers have developed a new laboratory model of the infection- and inflammation-plagued airways of cystic fibrosis (CF) patients. The model, described in the American Journal of Respiratory and ...

Study outlines 'perfect storm' that led to Colombia's antibiotic resistance epidemic

November 7, 2017
The nearly simultaneous emergence of a gene responsible for producing carbapenemases - enzymes that kill the most powerful antibiotics used against life-threatening, multidrug-resistant bacterial infections - coupled with ...

New link found between gut bacteria and age-related conditions

November 2, 2017
A new study shows for the first time that gut bacteria from old mice induce age-related chronic inflammation when transplanted into young mice. Called "inflammaging", this low-grade chronic inflammation is linked to life-limiting ...

Bacteria may help babies' digestive tracts more than suspected, scientists find

November 7, 2017
Some of the first living things to greet a newborn baby do a lot more than coo or cuddle. In fact, they may actually help the little one's digestive system prepare for a lifetime of fighting off dangerous germs.

How bacteria in the gut influence neurodegenerative disorders

November 13, 2017
Humans have roughly as many bacterial cells in their bodies as human cells, and most of those bacteria live in the gut. New research released today reveals links between the gut microbiome—the population of microorganisms ...

Investigating the collateral effects of antibiotics

November 1, 2017
Antibiotics can influence the swimming and swarming ability of multidrug-resistant bacteria, according to a new study in mSphere, an open-access journal of the American Society for Microbiology. The study, conducted using ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (2) Jul 28, 2008
Don't say there are only 100 bacterial pathogens. There are 100 common pathogens and lots of uncommon pathogens. Some uncommon pathogens that don't infect normal people infect AIDS victims and often kill them.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.