Study finds connections between genetics, brain activity and preference

August 6, 2008

A team of researchers from Massachusetts General Hospital (MGH) has used brain imaging, genetics and experimental psychology techniques to identify a connection between brain reward circuitry, a behavioral measurement of preference and a gene variant that appears to influence both. The report in the August 4 issue of Archives of General Psychiatry describes how variations in a gene involved with the brain's reward function are associated with the activity of a key brain structure and, in parallel, with the effort study participants 'invest' in viewing emotion-laden facial images. The findings have implications for how genes may influence healthy or dysfunctional behavior involving choices in many different areas.

"This work helps connect our psychological understanding of why we like some things and not others with the genetic mechanisms that define our range of behaviors," says Hans Breiter, MD, senior and corresponding author of the study and principal investigator for the Phenotype Genotype Project in Addiction and Mood Disorders, an interdisciplinary project involving the MGH Departments of Radiology, Psychiatry, and Neurology. "In the ongoing discussion about how much the environment versus genetics determine behavior, this study points to how the interaction between these factors influences our judgment and decision-making."

The current study is part of a decade-long effort to link studies of reward and aversion in animal models to human psychology and neuroscience. In the mid-1990s, Breiter and other MGH researchers used functional magnetic resonance imaging (fMRI) techniques to demonstrate how structures deep within the brain were involved with the experience of reward, how that experience was connected to motivated behavior, and how the reward system could be co-opted in situations like drug addiction.

In 2001, Breiter collaborated with Daniel Kahneman, PhD, of Princeton University and Peter Shizgal, PhD, Concordia University, Montreal, to show how the brain's reward/aversion circuitry followed the principles of what is called prospect theory when responding to the anticipation and receipt of a financial reward, helping to lay the groundwork for the field now called neuroeconomics. Kahnemann was a co-recipient of the 2002 Nobel Prize in economics for his earlier development of prospect theory, which describes the different ways people evaluate positive and negative outcomes in uncertain situations.

The current report connects molecular genetics with earlier studies of choice and preference and with investigations of the brain's reward circuitry. The researchers focused on a gene called CREB1 that has been implicated in animal studies of the brain's reward/aversion function. Study lead author Roy Perlis, MD, medical director of the MGH Bipolar Program, and colleagues previously found that depressed men with a particular variation near the gene coding for CREB report greater difficulty suppressing anger. Another study of theirs associated the same variation with a threefold greater risk of suicidal thinking in major depressive disorder patients soon after beginning antidepressant therapy. The 28 participants in the current study had no evidence of any psychiatric disorder or physical disorder that might influence brain activity.

In addition to analyzing each participant's version of the CREB1 gene, the researchers conducted a set of experiments. As the participants viewed facial expressions reflecting different emotional states – happy, neutral, sad, fearful and angry – fMRI scans were taken to examine the activity of brain structures associated with processing pleasant or unpleasant experiences. In another test, participants viewed the same pictures and could change how long they viewed an image by the way they pressed keys on a keyboard. Many earlier studies have established the keypress experiment as a quantitative measure of preference. In the version used in this study, keypress responses reflected participants' judgment and decisions about how much or how little they preferred the facial expressions.

The fMRI study showed that, during the viewing of angry faces, the activity of a structure called the insula, involved in the response to unpleasant situations, depended on which version of the CREB1 gene a participant inherited. In the keypress experiment, responses indicating a preference against the angry expression paralleled the CREB1-affected fMRI activity seen in the insula in the first experiment and also differed depending on the CREB1 variant that had been inherited.

"We were surprised to see that variation in the CREB1 gene would account for more than 20 percent of the difference in how healthy participants weighed different options and expressed specific preferences," says Perlis. "Our previous studies and the work of other groups suggested that variation in this gene could be important for judgment and decision-making by the brain, but we needed to connect this to a measurable decision-making effect in both behavior and brain activity."

Breiter adds, "This study connects quantitative measurements across three levels of observation – brain activity, genomic variation and the expression of preference. We now are investigating the potential role of other genes and will go on to assess how this relationship across three levels of observation may be affected by conditions such as depression and addiction."

Source: Massachusetts General Hospital

Explore further: Impact of a genetic risk factor for substance use differs by sex in adolescents

Related Stories

Impact of a genetic risk factor for substance use differs by sex in adolescents

November 15, 2017
In a study of adolescent boys and girls, neuroscientists at Penn State and Georgetown University Medical Center (GUMC) have found a sex difference in a gene linked to substance use disorders.

Why we still don't understand sleep, and why it matters

October 23, 2017
One of my first jobs was to keep a lookout for lions. There are some occupations that are not suitable for someone with untreated narcolepsy and this is probably one of them. I was 22, a recent zoology graduate studying meerkats ...

Maternal diet could affect kids' brain reward circuitry

September 25, 2017
Researchers in France found that rats who ate a junk food diet during pregnancy had heavier pups that strongly preferred the taste of fat straight after weaning. While a balanced diet in childhood seemed to reduce the pups' ...

Epigenetics of addiction: Epigenetic study untangles addiction and relapse in the brain

September 27, 2017
Why do some drug users continue to seek out drugs despite the prospect of losing family, friends, health or livelihood?

Cell model of the brain provides new knowledge on developmental disease

September 19, 2017
By reprogramming skin cells into nerve cells, researchers at Karolinska Institutet are creating cell models of the human brain. In a new study published in Molecular Psychiatry the researchers describe how cells from patients ...

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.