Brains rely on old and new mechanisms to diminish fear, researchers find

September 10, 2008

Humans have developed complex thought processes that can help to regulate their emotions, but these processes are also linked with evolutionarily older mechanisms that are common across species, according to a study by neuroscientists at New York and Rutgers universities. The research appears in the Sept. 11 issue of the journal Neuron.

The study was conducted by a team of researchers from the laboratory of NYU Professor Elizabeth Phelps, who co-authored the work with Mauricio R. Delgado, now a professor at Rutgers University in Newark, N.J. The study's other authors were Katherine Nearing, now at the University of Miami's School of Medicine, and Joseph E. LeDoux, a professor in NYU's Center for Neuroscience.

Recent scholarship has sought to translate basic research to the treatment of clinical disorders by exploring techniques and mechanisms for diminishing fear. This research has emphasized two approaches: the extinction of fear, which has been examined in a range of species and involves the repeated exposure to the feared event without negative consequences, or cognitive emotion regulation, which is unique to humans. This study examined the similarities and differences in the neural mechanisms underlying both of these approaches in diminishing fear.

Previous work in rodents and humans has linked the interaction of the brain's amygdala and ventral medial prefrontal cortex (vmPFC) to the extinction of fear. The researchers in the Neuron study asked if a similar neural circuitry, in addition to brain regions known to play a role in higher cognitive functions, specifically the dorsolateral prefrontal cortex (dlPFC), are linked to the use of cognitive strategies of changing one's thoughts to control emotion.

In conducting the study, the researchers used functional magnetic resonance imaging (fMRI) to compare the patterns of brain activation during extinction and emotion regulation. Prior to each trial, participants were given a written cue that instructed them to either respond to the stimulus ("focus on your natural feelings") or regulate their emotional response to the stimulus ("think of something blue in nature that calms you down, such as the ocean"). Subjects were asked to keep the same mental picture they selected during training throughout the experiment. The study's subjects were then presented with two stimuli, a blue and a yellow square that either predicted or did not predict a mild electric shock. Arousal responses to the blue and yellow squares served as the measure of fear, and its reduction through the use of the cognitive regulation strategy.

The researchers observed that regions of the dlPFC were engaged by the use of cognitive emotion regulation strategies, which also led to diminished responses in the amygdala, a region known to play a role in the expression of learned fears. In addition, the same vmPFC regions that are thought to inhibit the amygdala during extinction were activated. In sum, the findings suggest that there is overlap in the neural circuitry of diminishing learned fears through emotion regulation and extinction. Moreover, the results suggested that vmPFC may play a general regulatory role in diminishing fear across a range of paradigms.

"Our results suggest that even though humans may have developed unique capabilities for using complex cognitive strategies to control emotion, these strategies may influence the amygdala through evolutionarily shared mechanisms of extinction," explained Phelps.

"Extinction and cognitive emotion regulation may be, in part, complementary in that they rely on a common neural circuitry and, perhaps, similar neurophysiological and neurochemical mechanisms." Delgado added, "This finding is important because it suggests our detailed knowledge of the neural mechanisms of eliminating fears through extinction may also apply to the use of uniquely human, cognitive strategies to control emotion."

Source: New York University

Explore further: Cocaine users' brains unable to extinguish drug associations

Related Stories

Cocaine users' brains unable to extinguish drug associations

September 11, 2017
Cocaine-addicted individuals say they find the drug much less enjoyable after years of use, but they have great difficulty quitting. A new brain imaging study led by researchers at the Icahn School of Medicine at Mount Sinai ...

Study reveals potential target to better treat, cure anxiety disorders

March 5, 2013
Researchers at Boston University School of Medicine (BUSM) have, for the first time, identified a specific group of cells in the brainstem whose activation during rapid eye movement (REM) sleep is critical for the regulation ...

Understanding biological underpinnings of anxiety, phobias and PTSD

July 7, 2014
Fear in a mouse brain looks much the same as fear in a human brain.

Neuroscientists find that limiting a certain protein in the brain reverses Alzheimer's symptoms in mice

April 15, 2014
Limiting a certain protein in the brain reverses Alzheimer's symptoms in mice, report neuroscientists at MIT's Picower Intitute for Learning and Memory.

More than good vibes: Researchers propose the science behind mindfulness

October 30, 2012
Achieving mindfulness through meditation has helped people maintain a healthy mind by quelling negative emotions and thoughts, such as desire, anger and anxiety, and encouraging more positive dispositions such as compassion, ...

New study advances understanding on the treatment of pediatric feeding disorders

June 20, 2017
A new study suggests the existing drug D-cycloserine may enhance recovery for children during treatment for pediatric feeding disorders, by changing their brain's reaction to food. The results are reported in the June 20, ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.