Duke team finds compounds that prevent nerve damage

September 23, 2008

Duke University Medical Center scientists have made a significant finding that could lead to better drugs for several degenerative diseases including Huntington's disease and Alzheimer's disease. Compounds that block the activity of a specific enzyme prevented brain injury and greatly improved survival in fruit flies that had the same disease process found in Huntington's disease.

"We were able to prevent Huntington's disease-like illness in mutant fruit flies by giving them orally active transglutaminase inhibitors," said Charles S. Greenberg, M.D., a Professor of Medicine and Pathology at Duke University Medical Center and senior author of the paper. The drug blocks the action of an enzyme called tissue transglutaminase (TGM2). TGM2 may damage cells by forming strong bonds between proteins. Such bonding is beneficial for blood clotting which happens outside of cells, but if this type of bonding occurs inside cells, it can be harmful, Greenberg said.

The study appears in the current issue of Chemistry and Biology.

Huntington's disease causes uncontrolled movement and mental deterioration that develops later in life, and though there is no cure, people can get tested to learn whether they have the gene that causes the devastating illness, Greenberg said.

Alzheimer's disease, Parkinson's disease and polyglutamine diseases including Huntington's disease may possibly be improved with the same compounds, said Thung S. Lai, Ph.D., lead author and a Duke Associate Professor of Medicine. "Our findings may also help to develop drugs that block the pathology related to transglutaminase's action. That action has been linked to the development of tissue fibrosis, organ failure and aging."

While these compounds were promising in the animal system, they are several years away from entering any human trials, Greenberg said. "We will be studying these compounds in diseases in which TGM2 produces tissue injury."

For the study, Lai painstakingly screened 2,000 compounds. Only two groups of drugs were found to be effective TGM2 inhibitors. Some of the most potent TGM2 inhibitors were given to the fruit flies along with their food.

The most effective compound was a kinase inhibitor, a drug that had been developed several years ago for another purpose. The other beneficial compounds fell into a category of drugs that attack a sulfhydryl group in a protein.

The next step is to use the effective compounds as the backbone for developing even more effective drugs, Lai said. The scientists plan to test whether the TGM2 inhibitors they identified would prevent the fibrous tissue process that causes chronic renal, vascular and lung disease.

Source: Duke University Medical Center

Related Stories

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.