DNA of good bacteria drives intestinal response to infection

October 2, 2008,

A new study shows that the DNA of so-called "good bacteria" that normally live in the intestines may help defend the body against infection.

The findings, available Oct. 2 online in the journal Immunity, are reported by Yasmine Belkaid, Ph.D., and her colleagues in the Laboratory of Parasitic Diseases at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

A person normally has 300 to 500 species of beneficial bacteria, known as commensals, in their intestines. These bacteria are not harmful and, in fact, help an individual maintain his or her digestive health. Typically, the immune system does not attack gut commensals, even though they are bacteria.

"Within the body of a healthy adult, microbial cells vastly outnumber human cells. Research to understand these microbial communities is an exciting scientific frontier," says Anthony S. Fauci, MD, NIAID director. "Among many opportunities related to the so-called 'microbiome,' targeting beneficial bacteria may offer new avenues for therapy against infectious and immune-mediated diseases."

Just how commensals protect against harmful bacteria, known as pathogens, is a complex question. "Pathogens often behave similarly to gut commensals," Dr. Belkaid says. Because the body needs commensals but also has to rid itself of disease-causing microbes, the immune system must distinguish the good bugs from the bad ones.

One mechanism of protection is through the interaction between the commensals and certain immune cells in the intestines. This interaction occurs through the binding of the commensals to receptors on the T cells known as Toll-like receptors (TLRs).

In healthy individuals, some intestinal T cells (known as Tregs) play a regulatory role, recognizing commensals and keeping the immune system from attacking them. During an infection, however, T cells shift into attack mode to fight the infection. The factors controlling this shift from defense to offense have not been well understood.

Dr. Belkaid's team describes a novel way in which the Tregs are regulated to facilitate an immune response to a pathogen. They found that during an infection, the DNA of the body's beneficial bacteria binds to a specific receptor on the intestinal immune cells, called TLR9. The binding of commensal DNA to TLR9 in the presence of a pathogen prevents the generation of Tregs in favor of the generation of protective T cells. These protective T cells can then clear the body of the invading pathogen.

In effect, the commensal DNA acts as a natural adjuvant by boosting the activity of T cells so they can destroy the invading pathogen.

"There is a balance of regulatory immune signals in the body," notes Dr. Belkaid. "During an infection, we've found that commensals can break this balance in favor of an infection-fighting response."

While the immune system must react to invading pathogens to maintain health, an immune response to commensals can cause problems. For example, certain inflammatory bowel diseases, such as Crohn's disease, are thought to be caused in part by immune reactions against commensal bacteria.

Understanding how commensals interact with the immune system opens up the possibility of using beneficial bacteria as targets for future oral therapies against infections or autoimmune diseases.

Source: National Institute of Allergy and Infectious Diseases

Explore further: Study shows how body prevents potentially useful bacteria from causing disease

Related Stories

Study shows how body prevents potentially useful bacteria from causing disease

February 7, 2018
A new study reveals a mechanism by which the immune system may decide whether a bacterial species is a partner in bodily processes or an invader worthy of attack.

Cellular models of fetal intestinal tissue may help combat deadly neonatal disease

February 5, 2018
Cellular models of fetal and adult intestinal tissues generated by investigators from the Mucosal Immunology and Biology Research Center (MIBRC) at MassGeneral Hospital for Children (MGHfC) have identified differences in ...

Stem cell-derived intestine model mimics innate immune responses

November 29, 2017
A stem cell-derived in vitro model displays key small intestine characteristics including innate immune responses, according to a study published November 29, 2017 in the open-access journal PLOS ONE by Ying Chen and David ...

Specific microbes in digestive tract can boost success for cancer immunotherapy

January 4, 2018
In the Jan. 5, 2018 issue of Science, researchers from the University of Chicago Medicine show that specific strains of commensal bacteria - the swarms of microorganisms naturally dwelling in the intestines - can improve ...

Research in mice paves way to teasing out cause and effect between gut microbes and disease

December 6, 2017
Clearing a major hurdle in the field of microbiome research, Harvard Medical School scientists have designed and successfully used a method to tease out cause-and-effect relationships between gut bacteria and disease.

Commensal bacteria regulate immune cells in lungs to produce proteins for host defense

January 5, 2016
Microbiota—the trillions of bacteria that co-exist in the body—regulate the ability of lung dendritic cells to generate immune responses, according to a study led by researchers from the Icahn School of Medicine at Mount ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.