Low-carb diets alter glucose formation by the liver

October 20, 2008

A new study shows that a low-carbohydrate diet changes hepatic energy metabolism. When carbohydrates are restricted, the liver relies more on substances like lactate and amino acids to form glucose, instead of glycerol. These findings are in the November issue of Hepatology, a journal published by John Wiley & Sons on behalf of the American Association for the Study of Liver Diseases (AASLD).

Over the past 30 years, the U.S. population has reduced its fat intake, and increased its consumption of carbohydrates. During the same time period, obesity has been rising along with the prevalence of metabolic liver disease in which fatty deposits in the liver can lead to inflammation, fibrosis and cirrhosis. Some evidence has suggested that a high carbohydrate diet leads to fat formation in the liver, although confirming the association has been difficult.

To better understand hepatic energy production and glucose formation among various types of diets, researchers led by Jeffery Browning of the University of Texas Southwestern Medical Center measured the sources of hepatic glucose and TCA cycle flux in weight-stable subjects, and in subjects following carbohydrate- or calorie-restricted diets.

They recruited 14 subjects whose BMI fell between 25 and 35, and divided them into two groups of seven, matching them for age, BMI, gender and ethnicity. They also included seven lean subjects (BMI < 25) to act as a weight-stable comparison group.

The high-BMI groups followed either a low-carbohydrate or a low-calorie diet for fourteen days, while the weight-stable group continued their regular diet. All subjects then underwent an overnight metabolic study in which the researchers simultaneously assessed the metabolic pathways of hepatic glucose production and the TCA cycle.

In the weight-stable group, who consumed carbohydrates as a significant proportion of their diet, the TCA cycle alone provided sufficient energy to drive glucose formation. "This was not the case in individuals undergoing carbohydrate restriction," the authors report.

Carbohydrate restriction increased the rate of glucose formed using lactate or amino acids (GNGpep). "This suggests that in fasted human subjects undergoing weight loss, the elevated gluconeogenesis associated with carbohydrate restriction is driven by substrates such as lactate or amino acids," the authors report. In spite of this, TCA cycle flux in the low-carbohydrate group was similar to the low-calorie group, indicating similar rates of energy generation.

In contrast to previous reports, the present study showed similar hepatic glucose production among the dietary groups. The low-carbohydrate group was able to maintain hepatic glucose production at the levels observed for the weight-stable and low-calorie groups by increasing glucose formation using lactate or amino acids to match the reduction in glucose formation from glycerol.

"This observation is reminiscent of 'hepatic autoregulation' by which endogenous glucose production remains unchanged in the setting of altered gluconeogenesis or glycogenolysis because the two pathways tend to compensate for each other," the authors report.

They noted it was interesting that the increased glucose formation using lactate or amino acids in the low-carbohydrate group was not associated with increased TCA cycle flux (i.e. energy production.) However, they did not measure absolute rates of fatty acid delivery to the liver or ketone body production, limiting their ability to further interpret that finding.

"We have shown that the sources from which endogenous glucose is produced are dependent upon dietary macronutrient composition," the authors write. They suggest that the shift in glucose metabolism associated with a low carbohydrate diet could be beneficial in individuals with non-alcoholic fatty liver disease (NAFLD) due to improved disposal of hepatic fat.

In conclusion, these findings may partly explain the correlation between carbohydrate intake and severity of liver disease in individuals with NAFLD.

Source: Wiley

Explore further: Researchers discover that the liver and brain communicate in order to regulate appetite

Related Stories

Researchers discover that the liver and brain communicate in order to regulate appetite

November 13, 2014
The liver stores excess glucose, sugar, in the form of glycogen—chains of glucose—, which is later released to cover body energy requirements. Diabetic patients do not accumulate glucose well in the liver and this is ...

Combination therapy successfully treats hepatitis C in patients with advanced liver disease

November 30, 2015
A large multi-center clinical trial has found that a combination of antiviral medications can eradicate hepatitis C infection in more than 90 percent of patients with advanced liver disease. Known as the ASTRAL-4 trial, the ...

Commonly used diabetes drug may help to prevent primary liver cancer

April 1, 2012
Metformin, a drug widely used to treat Type II diabetes, may help to prevent primary liver cancer, researchers at the University of Maryland Marlene and Stewart Greenebaum Cancer Center report in the April 2012 issue of Cancer ...

Enzyme treatment reduces alcohol-induced liver damage in mouse models

April 25, 2017
An intestinal enzyme previously shown to keep bacterial toxins from passing from the gastrointestinal system into the bloodstream may be able to prevent or reduce the liver damage caused by excess alcohol consumption. In ...

Breaking bad mitochondria: Mechanism helps explain persistence of hepatitis C virus

April 15, 2014
Researchers at the University of California, San Diego School of Medicine have identified a mechanism that explains why people with the hepatitis C virus get liver disease and why the virus is able to persist in the body ...

Hepatitis C infection may fuel heart risk

August 11, 2015
People infected with the hepatitis C virus are at risk for liver damage, but the results of a new Johns Hopkins study now show the infection may also spell heart trouble.

Recommended for you

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.