Scientists adapt economics theory to trace brain's information flow

October 9, 2008

Scientists have used a technique originally developed for economic study to become the first to overcome a significant challenge in brain research: determining the flow of information from one part of the brain to another.

Researchers at Washington University School of Medicine in St. Louis and Florida Atlantic University report the new capability in The Journal of Neuroscience. It will provide important insights into brain organization and function, advancing efforts to help patients recover from brain injuries and mental disorders.

For years, scientists have used scanners to identify the brain regions involved in particular mental tasks. But they cannot get that data fast enough to trace the flow of information from one area of the brain to another.

"It's been like getting a picture of the members of an orchestra but not knowing the sequence in which each instrument was playing," says senior author Maurizio Corbetta, M.D., the Norman J. Stupp Professor of Neurology. "Now, for the first time, we can look at the questions of who's talking to whom in the brain, and what directions the activations of brain areas are flowing in."

The economic technique they used, called Granger causality, was developed by Sir Clive Granger, a co-recipient of the 2003 Nobel Memorial Prize in Economic Sciences who is now an emeritus economics professor at the University of California, San Diego.

The approach involves comparisons of streams of data known as time series, such as fluctuations in the stock market index and changes in employment levels. Because they consist of many pictures of the rise and fall of a value taken at regular time intervals, time series are comparable to movies. Given two movies, the comparison starts with frames from each of the movies taken at the same point in time. The second movie is then backed up one frame or more. Changes in those earlier frames in the second movie may predict changes that show up in a later frame of the first movie. Granger causality helps determine whether this link is coincidence or results from one process influencing another process.

Granger's original objective was to see if links could be established that allowed economists to use current economic data to forecast changes in the economy in the near future. But first author Steven L. Bressler, Ph.D., professor of psychology at Florida Atlantic University, suspected the technique might help reveal if one brain area was passing data to or influencing another brain area.

Chad Sylvester, an M.D./Ph.D. student at Washington University, gathered the data for the analysis. Researchers gave volunteers a cue that a visual stimulus would be appearing soon in a portion of a computer display screen, and asked them to report when the stimulus appeared and what they saw. Corbetta's group previously revealed that this task activated two brain areas: the frontoparietal cortex, which is involved in the direction of the attention, and the visual cortex, which became more active in the area where volunteers were cued to expect the stimulus to appear.

Scientists believed the frontoparietal cortex was influencing the visual cortex, but the brain scanning approach they were using, functional magnetic resonance imaging (fMRI), can only complete scans about once every two seconds, which was much too slow to catch that influence in action. When researchers applied Granger causality, though, they were able to show conclusively that as volunteers waited for the stimulus to appear, the frontoparietal cortex was influencing the visual cortex, not the reverse.

"Once the visual stimulus appears, we expect that the direction of influence between the frontoparietal cortex and the visual cortex will be less asymmetric, but this remains to be proven," notes co-author Gordon L. Shulman, Ph.D., research professor of neurology at Washington University.

Corbetta wants to apply Granger causality to a number of important questions about relationships in the brain, including attention's interactions with vision and memory. He will also use it to learn more about the extent to which the brain can adapt to injury by examining whether lesions in one area affect the flow of information processing in another area.

Source: Washington University School of Medicine

Explore further: Researchers demonstrate 'mind-reading' brain-decoding tech

Related Stories

Researchers demonstrate 'mind-reading' brain-decoding tech

October 23, 2017
Researchers have demonstrated how to decode what the human brain is seeing by using artificial intelligence to interpret fMRI scans from people watching videos, representing a sort of mind-reading technology.

Elementary neural processing units that tile the mouse brain

November 6, 2017
A hexagonal lattice organizes major cell types in the cerebral cortex, researchers in Japan have discovered. The pattern repeats across the brain, with similar cells synchronizing their activity in 'microcolumns', which could ...

Order in disorder: A key feature of dendritic organization in the brain

November 2, 2017
Neurons are the basic information processing structures in the brain and are composed of three main parts: dendrites, axons, and the soma. Dendrites receive and integrate synaptic inputs that are subsequently processed in ...

Study unveils changes in the brain during extended missions in space

November 1, 2017
It's been 55 years since NASA astronaut John Glenn successfully launched into space to complete three orbits aboard the Friendship 7 Mercury spacecraft, becoming the first American to orbit the Earth. The evolution of spaceflight, ...

300 neurons traced in extensive brain wiring map

October 30, 2017
A vast effort by a team of Janelia Research Campus scientists is rapidly increasing the number of fully-traced neurons in the mouse brain. Researchers everywhere can now browse and download the 3-D data.

Uncomfortable sight from an ancient reflex of the eye

October 31, 2017
The eyes are for seeing, but they have other important biological functions, including automatic visual reflexes that go on without awareness. The reflexive system of the human eye also produces a conscious, visual experience, ...

Recommended for you

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Strain of intestinal bacteria can stop high-salt diet from inducing inflammatory response linked to hypertension

November 15, 2017
Microbes living in your gut may help protect against the effects of a high-salt diet, according to a new study from MIT.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.