Scientists Find First Immune Responses to HIV Infection Ineffective

October 9, 2008,

(PhysOrg.com) -- Scientists have identified the very first antibodies to appear in the wake of HIV infection and have concluded that they are virtually impotent in mounting a meaningful defense against the invading virus.

The discovery is the latest finding in a growing body of work from scientists in Duke University's Center for HIV/AIDS Vaccine and Immunology (CHAVI) focusing on better understanding the cascade of events occurring immediately after HIV infection.

The current study was enabled by a valuable resource: a repository of plasma donor blood samples that were collected every three days - before, during and after HIV plasma viral load ramp-up in acute infection. Because the samples were held for weeks to complete HIV and hepatitis B and C testing, researchers were able to track the immune response from the moment of infection until several weeks after transmission.

Georgia Tomaras, PhD, the lead author of the study appearing online in the Journal of Virology, says the earliest immune response to HIV infection comes in the form of antibody-coated viruses (also known as immune complexes) arising eight days after the virus reaches measurable levels in plasma. In most infections, formation of antibody-coated virus particles is the first step in controlling infection. When it comes to HIV infection, however, that first step appears to be a feeble one.

"Mathematical modeling tells us these early antibodies do not slow the spread of the virus," says Tomaras. "We are conducting additional studies to determine if these early antibodies may actually be encouraging viral replication or if they could be useful in greater numbers to stop the infection."

Researchers say additional virus-fighting B cells, or antibodies, show up over time. For example, antibodies to the gp41 part of the outer coat of the virus appear five days after the first antibody-coated virus. In contrast, virus-specific antibodies that might be able to control infection if they were to appear in sufficient numbers do not arise until weeks after the infection - long after the virus has irreversibly inserted its code into host genes.

Scientists generally believe that antibodies against part of the outer coat of the virus, envelope, known as gp120, hold more promise against HIV infection. "But if they aren't activated until after HIV has already inserted itself into host genes, in essence, establishing a latent pool of infected cells, then it's too late for these antibodies to do much good," says Tomaras.

Understanding the time frame in which the right kind of immune response might have a chance to be effective in thwarting HIV infection is critical to designing an effective vaccine strategy, says Tomaras. "Most researchers now believe that the window of opportunity for an HIV vaccine to work is very narrow, and we are concerned that this window may close within a few days after transmission."

Coupling current findings with data from earlier studies, Barton Haynes, MD, Director of CHAVI and the senior author of the study, believes that a successful vaccine would have to create immunity that would precede the time of infection, a process that might also involve manipulating the earliest antibody response and then sparking the stronger, broadly neutralizing response that normally occurs at a much later time in natural infection.

"We are encouraged by these findings," says Haynes. "The pace of discovery is picking up and the pieces of the puzzle are coming together. Little by little we are learning more about the very earliest stages of HIV infection and a getting a clearer picture of what a successful vaccine will have to do."

The study was funded by the National Institute of Allergy and Infectious Diseases.

Two post-doctoral trainees in the Tomaras laboratory played key roles in the study. Nicole Yates determined the timing and the specificity of the first antibodies and Pinghuang Liu determined the timing of the first immune complexes.

Provided by Duke University

Explore further: Study establishes benchmarks for HIV vaccine candidates

Related Stories

Study establishes benchmarks for HIV vaccine candidates

December 27, 2017
The development of a vaccine that protects against HIV infections has proven extraordinarily difficult. One of the reasons is that naïve precursor B cells that can give rise to mature B cells producing broadly neutralizing ...

Team develops more accurate tool to track new HIV infections

December 21, 2017
Researchers at the Duke Human Vaccine Institute have led an effort to develop a more accurate way to gauge the incidence of HIV infections in large populations, which will improve research and prevention strategies worldwide.

A repurposed drug could open door to more stem cell transplants

December 20, 2017
A medication used to treat joint and skin conditions might also help people whose only hope of surviving cancer is receiving stem cells from a donor, according to research by a University of British Columbia scientist.

Designer proteins—the new generation of HIV vaccines being put to the test

November 30, 2017
South Africa has made tremendous advances in providing lifesaving antiretroviral therapy for HIV infected people. The country has the largest treatment programme in the world.

Why evolution is the challenge—and the promise—in developing a vaccine against HIV

December 1, 2017
To fight HIV, the development of immunization strategies must keep up with how quickly the virus modifies itself. Now, Boston Children's Hospital researchers are developing models to test HIV vaccines on a faster and broader ...

New findings to help HIV scientists establish 'template' for potent antibodies

November 21, 2017
New data published today in Immunity further illuminate how some human beings generate powerful, HIV-blocking antibodies. Led by scientists at the International AIDS Vaccine Initiative (IAVI) and The Scripps Research Institute ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.