Researchers uncover new links between stem cells, aging and cancer

October 16, 2008,

This microscope image shows stem cells (blue) in a mouse brain. The stem cells persist throughout adult life and form new brain cells. Other types of mouse brain cells are shown in green (astrocytes) and red (neurons). Stem-cell function in this brain region declines with age, due the process explained by the Morrison team. Photo credit: U-M Center for Stem Cell Biology
(PhysOrg.com) -- Four genes previously implicated in the control of cancer have been shown by University of Michigan scientists to play key roles in the aging process and stem-cell regulation.

It's a case of genetic multiple personalities: Four genes that suppress tumor formation also regulate the ability of adult stem cells to replace worn-out tissues, as well as the shut-down of stem cells during aging.

The genes switch on and off in a coordinated fashion as cells age to reduce the risk of cancer. In the process, they also shut down stem-cell function in aging tissues, reducing their capacity to regenerate.

The findings, reported in the Oct. 17 edition of the journal Cell, clarify and highlight the links between cancer, aging and stem-cell function by revealing some of their shared genetic pathways.

"All four of these genes had been implicated in the regulation of cancer, but only one of them had been implicated in the regulation of stem cells and aging," said Sean Morrison, director of the U-M Center for Stem Cell Biology and senior author of the Cell paper.

"So this is a pretty significant expansion of our mechanistic understanding of the connections between these vital processes," said Morrison, whose center is housed in the U-M Life Sciences Institute.

The three-year study of mouse brain cells also helped explain why human adult stem cells can't match the embryonic stem cell's potential to regenerate damaged tissues in patients, Morrison said.

"The genes identified in this study work together to reduce the function of adult stem cells as they age," he said. "Embryonic stem cells offer the advantage of not aging, not turning on this pathway. If you need to generate large numbers of cells to treat a major public health problem—such as juvenile diabetes—this is a big advantage."

The four genes examined in the study were Ink4a, Arf, Hmga2 and let-7b. The work involved breeding mice that lacked combinations of these genes, then measuring the effects on stem-cell function and brain-cell formation at different life stages.

"We have now identified an entire pathway that changes gene expression within stem cells as they age, and that helps to explain why old tissues have less stem-cell function and less regenerative capacity," said Jinsuke Nishino, a postdoctoral fellow in the Morrison lab and first author of the Cell paper.

Two years ago, Morrison's team demonstrated that Ink4a, well known for its role as a tumor suppressor, becomes increasingly active with age and shuts down stem-cell replication in older mice. Flicking that genetic switch likely serves as a defense against cancer-causing genetic mutations, which accumulate as cells repeatedly divide.

The main question remaining after the 2006 Nature paper was: What causes Ink4a to turn on with age?

In the new Cell paper, the U-M researchers show that Ink4a's activity in mouse neural stem cells is regulated by Hmga2, which in turn is controlled by let-7b. The same relationship is likely at work in humans, who possess the same four genes.

"The tumor-suppressor mechanisms ramp up with age," Morrison said. "And the good news is that it allows us to get older before getting cancer. The bad news is that your tissues lose their regenerative capacity, making you older.

"The more we study this issue, the more we think that tissue aging exists as a by-product of mechanisms that were created to protect us against cancer," he said.

The paper's other authors are Kiran Chada and Injune Kim. Chada, a pioneer in the study of Hmga2, is a professor of biochemistry at the Robert Wood Johnson Medical School in New Jersey. Kim is a former postdoctoral fellow in Morrison's lab who now works at the Korea Advanced Institute of Science and Technology.

The work was supported by the Howard Hughes Medical Institute, the National Institute of Neurological Disorder and Stroke, and the National Institute on Aging.

Provided by University of Michigan

Explore further: Osteopontin: An emerging role in HCV-related hepatocellular carcinoma

Related Stories

Osteopontin: An emerging role in HCV-related hepatocellular carcinoma

November 14, 2018
A research team based in Japan led by Kanazawa University has demonstrated the effect of osteopontin on hepatitis C virus replication and interferon signaling in cancer stem cells. Their research sheds light on a novel therapeutic ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Small populations of normal cells affect immunity in patients with XLP1

November 12, 2018
Human SH2D1A mutations resulting in X-linked lymphoproliferative syndrome type 1 (XLP1) are associated with a unique susceptibility to the Epstein-Barr virus (EBV), which may lead to fatal infectious mononucleosis (FIM). ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Nobody wants to talk about catheters—our silence could prove fatal

November 13, 2018
The ward nurse wanted to be reassuring. "Your mother's got a bit of an infection and we've popped her into intensive care," she told Sarah Wilkins. (Some names have been changed.)

To better treat COPD, scientists look to tailored approaches for deadly lung disease

November 9, 2018
Valerie Chang kept waking up breathless in the middle of the night. As a regular swimmer and non-smoker, she figured it was a fluke, a remnant of her childhood asthma, perhaps.

Recommended for you

A molecule for fighting muscular paralysis

November 19, 2018
Myotubular myopathy is a severe genetic disease that leads to muscle paralysis from birth and results in death before two years of age. Although no treatment currently exists, researchers from the University of Geneva (UNIGE), ...

Use genetic data to predict the best time of day to give radiotherapy to breast cancer patients, say researchers

November 19, 2018
A new clinical study led by the University of Leicester and conducted in the HOPE clinical trials facility at Leicester's Hospitals has revealed the pivotal role that changing the time of day that a patient receives radiotherapy ...

New dual-action cancer-killing virus

November 19, 2018
Scientists have equipped a virus that kills carcinoma cells with a protein so it can also target and kill adjacent cells that are tricked into shielding the cancer from the immune system.

New blood test detects early stage ovarian cancer

November 19, 2018
Research on a bacterial toxin first discovered in Adelaide has led to the development a new blood test for the early diagnosis of ovarian cancer—a disease which kills over 1000 Australian women and 150,000 globally each ...

New drug discovery could halt spread of brain cancer

November 19, 2018
The tissues in our bodies largely are made of fluid. It moves around cells and is essential to normal body function.

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.