Bright lights, not-so-big pupils

December 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

These light sensors are a small number of nerve cells in the retina that contain melanopsin molecules. Unlike conventional light-sensing cells in the retina—rods and cones—melanopsin-containing cells are not used for seeing images; instead, they monitor light levels to adjust the body's clock and control constriction of the pupils in the eye, among other functions.

"These melanopsin-containing cells are the only other known photoreceptor besides rods and cones in mammals, and the question is, 'How do they work?'" says Michael Do, Ph.D., a postdoctoral fellow in neuroscience at Hopkins. "We want to understand some fundamental information, like their sensitivity to light and their communication to the brain."

Using mice, the team first tested the light sensitivity of these cells by flashing light at the cells and recording the electrical current generated by one cell. They found that these cells are very insensitive to light, in contrast to rods, which are very sensitive and therefore enable us to see in dim light at night, for example. According to Do, the melanopsin-containing cells are less sensitive than cones, which are responsible for our vision in daylight.

"The next question was, What makes them so insensitive to light? Perhaps each photon they capture elicits a tiny electrical signal. Then there would have to be bright light—giving lots of captured photons—for a signal large enough to influence the brain. Another possibility is that these cells capture photons poorly," says Do.

To figure this out, the team flashed dim light at the cells. The light was so dim that, on average, only a single melanopsin molecule in each cell was activated by capturing a photon. They found that each activated melanopsin molecule triggered a large electrical signal. Moreover, to their surprise, the cell transmits this single-photon signal all the way to the brain.

Yet the large signal generated by these cells seemed incongruous with their need for such bright light. "We thought maybe they need so much light because each cell might also contain very few melanopsin molecules, decreasing their ability to capture photons," says King-Wai Yau, Ph.D., a professor of neuroscience at Hopkins. When they did the calculations, the research team found that melanopsin molecules are 5,000 times sparser than other light-capturing molecules used for image-forming vision.

"It appears that these cells capture very little light. However, once captured, the light is very effective in producing a signal large enough to go straight to the brain," says Yau. "The signal is also very slow, so it is not intended for detecting very brief changes in ambient light, but slow changes over time instead."

Curious about how these cells bear on behavior, the researchers examined pupil constriction in mice that had been genetically altered to be free of rod and cone function in order to focus on activity resulting from only melanopsin-containing cells. Flashing light at mice sitting in the dark, the team measured the degree of pupil constriction. They found that, on average, roughly 500 light-activated melanopsin molecules are enough to trigger a pupil response. "But it takes a lot of light to activate 500 molecules of melanopsin," says Yau. "Thus, the pupils close maximally only in bright light."

"In terms of controlling the pupils and the body clock, it makes sense to have a sensor that responds slowly and only to large light changes," says Yau. "You wouldn't want your body to think every cloud passing through the sky is nightfall."

"These melanopsin-containing cells signal light to many different parts of the brain to drive different behaviors, from setting the circadian clock to affecting mood and movement," says Do. "I want to know how these signals are processed and whether they are abnormal in disorders like seasonal affective disorder and jetlag—this is what we hope to tackle next."

On the Web:

Source: Johns Hopkins Medical Institutions

Explore further: Study sheds new light on Von Hippel-Lindau syndrome

Related Stories

Study sheds new light on Von Hippel-Lindau syndrome

March 12, 2018
Investigators at Vanderbilt-Ingram Cancer Center (VICC) and the Virginia Tech Carilion Research Institute (VTCRI) have revealed a gene mutation's role in Von Hippel-Lindau syndrome, a genetically inherited disease which causes ...

Feed or flee—the brain cells that tell us when to eat and when to run away

March 12, 2018
Feeling peckish? Eating may be taken for granted as a fundamental part of life, but getting it wrong can have serious consequences for our health.

Immune system 'double agent' could be new ally in cancer fight

March 16, 2018
St. Jude Children's Research Hospital scientists have discovered that an enzyme called TAK1 functions like a "double agent" in the innate immune response, serving as an unexpected regulator of inflammation and cell death. ...

Helicobacter creates immune system blind spot

March 13, 2018
The gastric bacterium H. pylori colonizes the stomachs of around half the human population and can lead to the development of gastric cancer. It is usually acquired in childhood and persists life-long, despite a strong inflammatory ...

Young blood—magic or medicine?

March 16, 2018
Ben Franklin famously wrote: "In this world, nothing can be said to be certain, except death and taxes". What he didn't mention, despite being 83 years old, was a third, almost inevitable eventuality: ageing.

Making new memories is a balancing act

March 14, 2018
Those of us who can't resist tourist tchotchkes are big fans of suitcases with an expandable compartment. Now, it turns out the brain's capacity for storing new memories is expandable, too, with limitations.

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...

Clearing clumps of protein in aging neural stem cells boosts their activity

March 15, 2018
Young, resting neural stem cells in the brains of mice store large clumps of proteins in specialized cellular trash compartments known as lysosomes, researchers at the Stanford University School of Medicine have found.


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (2) Dec 31, 2008
Hm. I wonder if they're sensitive to the same visual spectrum as the rods and cones or only a part of that spectrum.
2 / 5 (2) Dec 31, 2008
Chicken melanopsin absorbs maximally at 476-484nm according to

That's pretty bluish, a little toward green. (Look up "chromaticity".)

Fwiw, SAD/jetlag devices employ blue LEDs.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.