Genes for 9 health indicators

December 7, 2008,

A new genome-wide study examines genetic variants associated with nine metabolic traits and is the first to draw out novel variants from a population unselected for current disease. The traits are indicators for common disease such as cardiovascular disease, type 2 diabetes, blood pressure, inflammation and lipid levels.

Cohorts are followed throughout their lives, gathering lifelong information about their health: these data will help researchers to dissect the complex causes of common disease, whether genetic or environmental. The current study might indicate genetic variants that influence early development of disease, informing public health measures.

Unlike case-control studies, which make genomic comparisons of apparently healthy people with patients with a specific condition, cohort studies provide long-term information across a population.

"The power of studies such as ours lies in their ability to examine these traits for early life events, to reflect the genetic make-up of the wider population and to investigate the relationship between genetic variation and environment over time," says Professor Leena Peltonen, Head of Human Genetics at the Wellcome Trust Sanger Institute and a senior author of the paper. "Our study indicates that the environment accounts for around 30% or less of the consequences of the traits. Clearly we have to increase our efforts to understand the genetic factors involved."

The population study looked at a cohort of people born in northern Finland in 1966: the environmental exposure and genetic background of this population is relatively homogeneous and, because the sample includes almost all people born in that year, it reflects the overall composition of the population.

The team looked at more than 360,000 genetic variants in almost 5000 people. These samples were typed to uncover variants associated with levels of triglycerides, high density lipoprotein, low density lipoprotein, glucose, insulin, C-reactive protein, as well as body mass index and blood pressure. Eight 'environmental' factors, including alcohol use, smoking and birth weight, were also included in the analysis.

"We found 23 regions of the genome associated with these traits," says Professor Nelson Freimer, University of California, Los Angeles, the other senior author. "We were delighted that our study identified 14 that had been described before: it is essential that a study such as this picks up the known variants.

"More important, we found nine novel variants: in five of these cases, our knowledge of the role of the gene suggests they are good candidates for important variants."

The research differs from prior investigations in power and study design, which might explain its ability to identify nine previously unknown loci. Five of these associations - HDL with NR1H3 (LXRA), LDL with AR and FADS1/FADS2, glucose with MTNR1B, and insulin with PANK1 - implicate genes with known or postulated roles in metabolism, and are good candidates for further study of the biological role they might play in these conditions.

The comprehensive cohort study also allowed the team adjust for the additional data such as environmental influences and body mass index. Three regions were associated with LDL or insulin when the population was divided into normal or elevated body mass index.

"Our population sample allows us to look at gene-environment interactions," explains Professor Chiara Sabatti, University of California, Los Angeles, a co-author of the paper, "but we need to examine larger populations in order to validate these. We are only starting to have a glimpse of how the power of modern genetics can work with population data to uncover genes that will be able to help clinical and public health work in the future. We still have many challenges ahead."

Although genetic influences are thought to account for at least half of the variation in each of the traits, the current results explain perhaps one-tenth of that. There remains much more to be discovered.

Work underway, such as The 1000 Genomes Project and wider population studies, will help to determine whether the additional genetic effects lie in many common variants with relatively small effect or in rare variants with a larger effect.

Citation: Sabatti C, Service SK et al. (2008) Genomewide association analysis of metabolic traits in a birth cohort from a founder population. Nature Genetics, Published online before print as doi: dx.doi.org/10.1038/ng.271

Source: Wellcome Trust Sanger Institute

Explore further: HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

Related Stories

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Uncovering asthma's genetic origins

January 4, 2018
The statistics about asthma are staggering. According to a recent Global Burden of Disease Study, more than 334 million people worldwide may suffer from this common chronic disease. In the United States, the Centers for Disease ...

Benefits of a healthy diet greater in people at high genetic risk for obesity

January 10, 2018
The benefits of sticking to a healthy diet to prevent long term weight gain are greater in people at high genetic risk for obesity than in those with low genetic risk, finds a study in The BMJ today.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.