A Novel Human Stem Cell-based Model of ALS Opens Doors for Rapid Drug Screening

December 3, 2008
Top: When motor neurons (shown in red) are grown in the presence of defective astrocytes their numbers plummet. Bottom: Treating the cultures with apocynin, a powerful anti-oxidant, dramatically increases the survival of motor neurons. All cells' nuclei are labeled blue and neurons are shown in green. Right panel: Only motor neurons are shown. Credit: Courtesy of Dr. M. Carol Marchetto, Salk Institute for Biological Studies

Long thought of as mere bystanders, astrocytes are crucial for the survival and well-being of motor neurons, which control voluntary muscle movements. In fact, defective astrocytes can lay waste to motor neurons and are the main suspects in the muscle-wasting disease amyotrophic lateral sclerosis (ALS).

To get to the root of this complicated relationship, researchers from the Salk Institute for Biological Studies for the very first time established a human embryonic stem cell (hESC)-based system for modeling ALS. Their study confirmed that dysfunctional human astrocytes turn against their charges and kill off healthy motor neurons. But more importantly, treating the cultured cells with apocynin, a powerful anti-oxidant, staved off motor neuron death caused by malfunctioning astrocytes.

Their findings, which appear in the Dec. 4 issue of the journal Cell Stem Cell, provide new insight into the toxic pathways that contribute to the demise of motor neurons in ALS and open up new possibilities for drug-screening experiments using human ALS in vitro models, as well as clinical interventions using astrocyte-based cell therapies.

"A variety of drugs that had demonstrated significant efficacy in mouse models didn't keep their promise in both preclinical and clinical trials," says Fred H. Gage, Ph.D., a professor in the Laboratory for Genetics, who led the study. In fact, just one drug—riluzole— has been approved by the FDA to treat ALS, and it only slows the course of the disease by two months.

"There is an urgent need for new ALS models that have the potential to translate into clinical trials and that could, at a minimum, be used in conjunction with the murine models to verify drugs and drug targets," says Gage.

ALS, also known as Lou Gehrig's disease, was named after the legendary New York Yankee slugger who lent his name to the mysterious illness over 60 years ago. Usually fatal, the neurodegenerative disease attacks motor neurons controlling voluntary movement, leading to progressive paralysis and muscle atrophy.

Although ALS was first classified as a disease over 140 years ago, there are still few clues as to its cause. An important step toward understanding the disease came when scientists discovered that ALS can be induced by inherited mutations in the gene encoding the SOD1 enzyme, short for superoxide dismutase 1. This enzyme protects the body from damage caused by free radicals, highly reactive molecules produced by cells during normal metabolism.

Spinal motor neurons express high levels of SOD1, which many originally thought might explain their selective vulnerability. But soon, mouse experiments revealed that motor neuron degeneration is not necessarily associated with the expression of defective SOD1 in the motor neurons per se but rather with its expression in a critical number of neighboring support cells.

Since most treatments that worked in ALS mouse models didn't live up to expectations in preclinical and clinical trials, postdoctoral researcher and first author M. Carol Marchetto, Ph.D., looked for an alternative: "Transgenic mice containing the human mutated forms of SOD1 have been very useful to study the disease onset and progression. But we felt that cell culture models using both human neurons and astrocytes could potentially be very useful for drug screening and, to some extent, cell replacement therapies."

To uncover the contribution of astrocytes to human motor neuron degeneration, Marchetto first coaxed hESCs to differentiate into motor neurons through a series of physical manipulations and exposure to a number of growth factors. When she co-cultured these cells with human astrocytes expressing a mutated form of SOD1, the number of motor neurons alive in the Petri dish plummeted. "In the presence of the mutation, the astrocytes activated an inflammatory response and started producing reactive oxygen species, a hallmark of ALS," says Marchetto.

When she treated these cells with known antioxidants such as apocynin, which is found in many plants, epicatechin, one of the beneficial ingredients in green tea and chocolate, or alpha-lipoic acid, which is produced by the body, the percentage of astrocytes churning out harmful reactive oxygen species decreased significantly. Not only that, when she treated motor neurons cultured in the presence of mutant astrocytes, apocynin—the only one tested in a co-culture experiment—helped motor neurons withstand their no-longer-supportive environment.

"We believe that we can use this system as a rapid drug screening test for oxidative damage to identify the best candidates for subsequent long-term co-culture experiments," says Marchetto.

While research on the effects of the SOD1 gene mutation is providing important clues about the possible causes of motor neuron death, only a small fraction of all ALS cases are actually due to the mutation; other as yet unidentified genetic causes clearly exist.

"The rapid advances in induced pluripotent stem cell technology will soon allow us to generate patient-specific stem cells that can be used in our co-culture assay to gain new insight into the different causes of ALS," says Gage.

Source: Salk Institute

Explore further: Resolving traffic jams in human ALS motor neurons

Related Stories

Resolving traffic jams in human ALS motor neurons

October 17, 2017
A team of researchers at VIB and KU Leuven used stem cell technology to generate motor neurons from ALS patients carrying mutations in FUS. They found disturbed axonal transport in these motor neurons, but also identified ...

Body's own defense against ALS actually drives disease progression at later stages

September 11, 2017
Columbia scientists have discovered that one of the body's natural defenses against amyotrophic lateral sclerosis (ALS)—a cellular 'clean-up process' called autophagy—suppresses disease progression early on, but in later ...

Scientists prevent neurodegeneration-associated protein clumping in lab study

August 8, 2017
Scientists report in a new study that by imitating a natural process of cells, they prevented the formation of protein clumps associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia.

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

New book explores how the human brain can overcome any condition

September 14, 2017
In his new book 'Your brain knows more than you think', the neuroscientist Professor Niels Birbaumer, a Senior Research Fellow at the Wyss Center, in Geneva, Switzerland, investigates the limitless capacity of the brain to ...

Targeting upper motor neurons to treat ALS

February 1, 2016
Scientists have demonstrated for the first time that it is possible to specifically modify gene expression in diseased upper motor neurons, brain cells that break down in ALS.

Recommended for you

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

US regulators approve 2nd gene therapy for blood cancer

October 19, 2017
U.S. regulators on Wednesday approved a second gene therapy for a blood cancer, a one-time, custom-made treatment for aggressive lymphoma in adults.

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.