Safety Can be Learned - and Helps Combat Depression

December 15, 2008,
Safety Can be Learned - and Helps Combat Depression
In safe hands: a new animal model demonstrates that "learned safety" can have an anti-depressive effect.

(PhysOrg.com) -- Learning a feeling of safety activates cellular and molecular processes that act against depression. This has been analysed using a new animal model that helps examine and explain the relevant cell biology processes more effectively. The findings now published in the journal Neuron show that "learned safety" can have an anti-depressive effect comparable to pharmacological antidepressants but that this effect is controlled by other molecular processes. The project supported by the Austrian Science Fund FWF was carried out by the Howard Hughes Medical Institute at Columbia University in the U.S.

Fear is good. It protects us from all kinds of danger and is therefore both part of our instinct and can also be learned. However, fear can also become aggravating or even chronic and cause various psychological conditions such as depression. To investigate learned fear, fear-reducing behaviour - learned safety - has now been studied in animals, conditioning them to associate specific stimuli with a feeling of safety, which consequently reduces learned fear. It was precisely this experimental model that Dr. Daniela D. Pollak used as project manager in Prof. Eric Kandel's group. This was how she analysed cellular and molecular processes in relation to learned safety.

Using Safety to Fight Depression

The findings from this work, which were recently published in the journal Neuron, were amazingly clear, as Dr. Pollak explains: "Three key conclusions can be drawn from the work of our team. Firstly, learned safety is an animal model for behavioural therapy for depression, resulting in similar effects to treatment using pharmacological antidepressants. Secondly, the animal model therefore also lends itself to analysing cellular and molecular interactions between anti-depressive medication and behavioural treatments for depression. And thirdly, learned safety leads to cell biology reactions such as those caused by antidepressants but uses different molecular mechanisms."

Specifically, Dr. Pollak's team was able to observe the following cellular and molecular processes in relation to learned safety:
It was shown that learned safety has a positive effect on newly created cells in a specific region of the hippocampus (dentate gyrus) in the brain. This was because significantly more new cells survived there when they had previously experienced a stimulus through learned safety. This effect on cell survival could be traced to increased expression of the protein BDNF (brain-derived neurotrophic factor), which is also triggered by learned safety. However, in order to be effective, the stimulus for the cells, as shown by Dr. Pollak's work, needed to take place in a particular phase after creation of new cells.

Effects on the activity of various key genes were also observed. Learned safety reduces the activity of genes from the dopaminergic and neuropeptide systems in the amygdale. Interestingly, however, no effect was observed on the serotonin-dependent system, which is a key target for medication-based treatment of depression.

Two Approaches - One Goal

Overall, these findings lead Dr. Pollak to believe the existence of at least two different neurotransmitter systems for the anti-depressant effects of learned safety. These lead to neuronal modifications that are similar to those caused by antidepressants. Yet - as the lack of an effect on the serotonin-dependent system suggests - this is done through other cellular processes.

The publication of this work also marks a turning point in Dr. Pollak's career. Armed with two officially recognised scholarships from Austria (a Max Kade Fellowship from the Austrian Academy of Sciences and an Erwin Schrödinger Fellowship from the FWF), she had the opportunity in the last three years to make key contributions to neurophysiology on the team headed by Nobel prize winner Eric Kandel. She will now be pursuing this personal passion in future in research at the Institute of Physiology at the Medical University of Vienna.

Publication: An Animal Model of a Behavioral Intervention for Depression. Neuron 60, 149-161, DOI 10.1016/j.neuron.2008.07.041

Provided by Austrian Science Fund (FWF)

Explore further: Scientists find natural mimetics of anti-cancer, anti-aging drugs metformin and rapamycin

Related Stories

Scientists find natural mimetics of anti-cancer, anti-aging drugs metformin and rapamycin

November 29, 2017
Researchers from the Biogerontology Research Foundation, Insilico Medicine, Life Extension and other institutions have published a study in the journal Aging on the identification of natural mimetics of metformin and rapamycin. ...

Project Baseline seeks participants for study of biomedical basis of health

October 26, 2017
The large-scale study of what causes health and disease is enrolling participants at Stanford. All are welcome to apply. In particular, the project is seeking ethnic minorities and individuals with an increased risk of disease.

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

UCSF team engineers 'safety switches' for immune therapies

July 25, 2012
(Medical Xpress) -- A UCSF team has harnessed a natural protein in bacteria to create a “pause switch” in immune cells, potentially leading to more effective and safer immune therapies for diseases such as cancer ...

Common cholesterol drug safe, may improve learning disabilities in patients with neurofibromatosis

September 27, 2011
Researchers at Children's National Medical Center have found that a cholesterol-lowering statin drug appears to be safe in children with neurofibromatosis type 1 (NF1) and may improve learning disabilities, including verbal ...

Recommended for you

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.