Scientists solve failed vaccine mystery

December 15, 2008

Research led by Johns Hopkins Children's Center scientists has figured out why a respiratory syncytial virus vaccine used in 1966 to inoculate children against the infection instead caused severe respiratory disease and effectively stopped efforts to make a better one. The findings, published online on Dec. 14 in Nature Medicine, could restart work on effective killed-virus vaccines not only for RSV but other respiratory viruses, researchers say. The new findings also debunk a popular theory that the 1966 vaccine was ineffective because the formalin used to inactivate the virus disrupted critical antigens, the substances that stimulate the production of protective antibodies.

Instead, researchers said, the problem occurred when the antibodies created by the vaccine failed to successfully bind to the real virus after exposure to it, thereby incapacitating it. Like vaccines against influenza and polio, the 1966 formalin-inactivated RSV vaccine produced antibodies, but these turned out to be defective ones with poor virus-binding ability.

"We have found the root cause of the problem, and in doing so we have uncovered clues that will help us design even safer and more effective vaccines in the future," says senior investigator Fernando Polack, M.D., an infectious disease specialist at Hopkins Children's.

More specifically, in a series of experiments, the research team discovered that the old RSV vaccine failed to trigger a "signaling" mechanism — called toll-like receptor activation — that helps the immune system recognize a virus and mount a defense against it. Toll-like receptor activation is the first in cascade of immune system responses that occur after infection, firing off signals to other immune cells telling them to produce and release antibodies.

First, the team compared immune system response in three groups of mice: those vaccinated with a placebo, those with a weakened form of the RSV virus, and those with inactivated or killed-virus vaccines. Researchers found that in the last group, the toll-like receptor activation was weak and led to the production of defective antibodies.

Next, they infused the vaccine with a substance that stimulates toll-like receptor activation to see if it would created antibodies better equipped to bind to and neutralize the virus. Indeed, mice vaccinated with the toll-like receptor stimulating form of the inactivated vaccine produced antibodies with better binding and virus-neutralizing ability. Mice immunized with this form of the vaccine had milder symptoms and less inflammation in the bronchi and the lungs when infected with the real RSV.

Source: Johns Hopkins Medical Institutions

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.