Low-carbohydrate diet burns more excess liver fat than low-calorie diet

January 20, 2009
Low-carbohydrate diet burns more excess liver fat than low-calorie diet
Drs. Jeffrey Browning (right) and Shawn Burgess have found that people on low-carbohydrate diets depend more on the oxidation of fat in the liver for energy than those on a low-calorie diet. Credit: UT Southwestern Medical Center

People on low-carbohydrate diets are more dependent on the oxidation of fat in the liver for energy than those on a low-calorie diet, researchers at UT Southwestern Medical Center have found in a small clinical study.

The findings, published in the journal Hepatology, could have implications for treating obesity and related diseases such as diabetes, insulin resistance and nonalcoholic fatty liver disease, said Dr. Jeffrey Browning, assistant professor in the UT Southwestern Advanced Imaging Research Center and of internal medicine at the medical center.

"Instead of looking at drugs to combat obesity and the diseases that stem from it, maybe optimizing diet can not only manage and treat these diseases, but also prevent them," said Dr. Browning, the study's lead author.

Although the study was not designed to determine which diet was more effective for losing weight, the average weight loss for the low-calorie dieters was about 5 pounds after two weeks, while the low-carbohydrate dieters lost about 9½ pounds on average.

Glucose, a form of sugar, and fat are both sources of energy that are metabolized in the liver and used as energy in the body. Glucose can be formed from lactate, amino acids or glycerol.

In order to determine how diet affects glucose production and utilization in the liver, the researchers randomly assigned 14 obese or overweight adults to either a low-carbohydrate or low-calorie diet and monitored seven lean subjects on a regular diet.

After two weeks, researchers used advanced imaging techniques to analyze the different methods, or biochemical pathways, the subjects used to make glucose.

"We saw a dramatic change in where and how the liver was producing glucose, depending on diet," said Dr. Browning.

Researchers found that participants on a low-carbohydrate diet produced more glucose from lactate or amino acids than those on a low-calorie diet.

"Understanding how the liver makes glucose under different dietary conditions may help us better regulate metabolic disorders with diet," Dr. Browning said.

The different diets produced other differences in glucose metabolism. For example, people on a low-calorie diet got about 40 percent of their glucose from glycogen, which is comes from ingested carbohydrates and is stored in the liver until the body needs it.

The low-carbohydrate dieters, however, got only 20 percent of their glucose from glycogen. Instead of dipping into their reserve of glycogen, these subjects burned liver fat for energy.

The findings are significant because the accumulation of excess fat in the liver - primarily a form of fat called triglycerides - can result in nonalcoholic fatty liver disease, or NAFLD. The condition is the most common form of liver disease in Western countries, and its incidence is growing. Dr. Browning has previously shown that NAFLD may affect as many as one-third of U.S. adults. The disease is associated with metabolic disorders such as insulin resistance, diabetes and obesity, and it can lead to liver inflammation, cirrhosis and liver cancer.

"Energy production is expensive for the liver," Dr. Browning said. "It appears that for the people on a low-carbohydrate diet, in order to meet that expense, their livers have to burn excess fat."

Results indicate that patients on the low-carbohydrate diet increased fat burning throughout the entire body.

Dr. Browning and his colleagues will next study whether the changes that occur in liver metabolism as a result of carbohydrate restriction could help people with nonalcoholic fatty liver disease. Previous research has shown a correlation between carbohydrate intake and NAFLD.

Source: UT Southwestern Medical Center

Explore further: Inflammatory signature of nonalcoholic fatty liver disease

Related Stories

Inflammatory signature of nonalcoholic fatty liver disease

May 16, 2017

A team of investigators led by Rohit Kohli, MBBS, MS, of Children's Hospital Los Angeles, has identified key inflammatory cells involved in nonalcoholic fatty liver disease. Current treatment for the disorder involves changes ...

Stool microbes predict advanced liver disease

May 2, 2017

Nonalcoholic fatty liver disease (NAFLD)—a condition that can lead to liver cirrhosis and cancer—isn't typically detected until it's well advanced. Even then, diagnosis requires an invasive liver biopsy. To detect NAFLD ...

What are 'fasting' diets and do they help you lose weight?

May 8, 2017

Trying to lose weight is hard work. You need to plan meals and snacks, and make a big effort to avoid situations that trigger more eating and drinking than you'd planned. Dieting can also be very antisocial. But what if you ...

New model could speed up colon cancer research

May 1, 2017

Using the gene-editing system known as CRISPR, MIT researchers have shown in mice that they can generate colon tumors that very closely resemble human tumors. This advance should help scientists learn more about how the disease ...

Recommended for you

Healing wounds with cell therapy

May 29, 2017

Diabetic patients frequently have lesions on their feet that are very difficult to heal due to poor blood circulation. In cases of serious non-healing infections, a decision to amputate could be made. A new therapeutic approach, ...

Bioelectricity new weapon to fight dangerous infection

May 26, 2017

Changing the natural electrical signaling that exists in cells outside the nervous system can improve resistance to life-threatening bacterial infections, according to new research from Tufts University biologists. The researchers ...

New hair growth mechanism discovered

May 25, 2017

In experiments in mice, UC San Francisco researchers have discovered that regulatory T cells (Tregs; pronounced "tee-regs"), a type of immune cell generally associated with controlling inflammation, directly trigger stem ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.