Stress May Hasten The Growth Of Melanoma Tumors But Common Beta-Blocker Medications Might Slow That Progress

January 30, 2009 by Earle Holland

For patients with a particularly aggressive form of skin cancer - malignant melanoma - stress, including that which comes from simply hearing that diagnosis, might amplify the progression of their disease.

But the same new research that infers this also suggests that the use of commonly prescribed blood pressure medicines might slow the development of those tumors and therefore improve these patients' quality of life.

The study, the third by Ohio State University scientists in the last two years that looked for links between stress hormones and diseases like cancer, is published in the the journal Brain, Behavior and Immunity.

Eric V. Yang, a research scientist at the Institute for Behavioral Medicine Research (IBMR), exposed samples of three melanoma cell lines to the compound norepinephrine, a naturally occurring catecholamine that functions as a stress hormone. In times of increased stress, levels of norepinephrine increase in the bloodstream.

Yang and colleague Ronald Glaser were looking for changes in the levels of three proteins released by the cells. Glaser is a professor of molecular virology, immunology and medical genetics, member of the university's Comprehensive Cancer Center and director of the IBMR.

One of the proteins - vascular endothelial growth factor, or VEGF - plays a key role in stimulating the growth of new blood vessels needed to feed a growing tumor, a process called angiogenesis. The other two proteins, Interleukin-6 and Interleukin-8, are both involved in fostering tumor growth.

All three of the cell lines were grown from tissues taken from secondary tumors that had metastasized from a primary site and they signify aggressive forms of cancer. But one of them - C8161 - represented the most aggressive and advanced form of melanoma.

"We noticed that all three of these proteins increased in response to the norepinephrine," Yang explained, adding that in the C8161 cells, "we got a 2,000 percent increase in IL-6. In untreated samples from this cell line, you normally can't detect any IL-6 at all.

"What this tells us is that stress might have a worse effect on melanoma that is in a very aggressive or advanced stage, and that one marker for that might be increased levels of IL-6," he said.

The researchers ruled out cell proliferation - an increase in the number of cells present - as a reason for the increase in all three proteins. That meant that the only other answer was that the cells were increasing their expression of the genes responsible for producing these compounds.

The researchers showed that the norepinephrine molecule binds to receptors on the surface of cancer cells and once this linkage occurs, it stimulates the release of the proteins that support angiogenesis and tumor growth.

Yang and Glaser first confirmed that the receptors were present on cells in all three cell lines and then tested what would happen when the receptors were blocked by common blood pressure medicine - the so-called "beta-blockers."

When the beta-blockers did bind to the receptors, the production of the three proteins reduced significantly, suggesting that in patients with melanoma, using these types of medications might be used to slow the progression of the disease in patients.

While the study was restricted to tumor cell lines, rather than using animal models or human patients, the findings are still exciting. The researchers found strong evidence that the same receptors are expressed on the surface of tumor cells from biopsies that were taken from melanoma patients. That supports the clinical importance of the results.

Two earlier studies on different tumor cell lines - one prepared from a multiple myeloma and the other from a nasopharyngeal carcinoma - also showed that exposure to norepinephrine increased the levels of proteins responsible for accelerating tumor growth.

The research is showing not only that different forms of cancer react differently to stress hormones but also that those reactions can vary within a specific form of the disease, with the possibility of a more aggressive form of the disease reacting more strongly to the stressors.

For melanoma patients, that can be very important since these tumors are able to metastasize, or spread, when they are much smaller than most other solid cancers. The American Cancer Society estimates that nearly 48,000 cases of melanoma are diagnosed each year and nearly 8,000 people are killed each year by the disease.

Source: Ohio State University

Explore further: Melanoma cells rewire to resist drug treatment

Related Stories

Melanoma cells rewire to resist drug treatment

September 27, 2017
In 2014, new combination therapies to treat patients with metastatic melanoma hit the market, helping extend the lives of those with this aggressive disease. Yet unfortunately, after several months of treatment, almost all ...

Massive screen of drug combinations may find treatment for resistant, BRAF-mutant melanoma

October 26, 2015
A team of Massachusetts General Hospital (MGH) investigators has discovered a new combination of drugs that may be effective against one of the deadliest cancers, malignant melanoma. The combination - pairing a drug targeted ...

Fibroblasts contribute to melanoma tumor growth: study

January 5, 2012
Fibroblasts, cells that play a role in the structural framework of tissues, play an apparent role in melanoma tumor growth. Fibroblasts also contribute to melanoma drug resistance and may also facilitate the "flare" response ...

Reprogrammed immune cells might give doctors an edge in rallying the body's defenses against tumor growth

March 1, 2013
Genetic abnormalities accrued by tumor cells lead to inappropriate production of proteins at the wrong time or place, or even the synthesis of unusual hybrid proteins not found in normal cells. Such abnormalities can serve ...

Early-stage melanoma tumors contain clues to metastatic potential

July 14, 2011
Wanderlust in a person can be admirable or romantic. In a cancerous tumor, it may be lethal.

Cell senescence does not stop tumor growth

January 19, 2012
Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.