A Better View for Surgeons During Minimally Invasive Surgeries

January 2, 2009 by Maureen C. Curran
Surgicam - a layer of the current prototype of SurgiCam; blue arrow points to area where the lens module will be seated. [SurgiCam Team Photo Gallery]

A multidisciplinary team of researchers at the UC San Diego division of the California Institute for Telecommunications and Information Technology (Calit2) is nearing completion of their first prototype of “SurgiCam,” a tiny surgical camera that can be inserted through a 1.5 cm incision in the abdomen during minimally invasive surgery (MIS).

During an MIS procedure, such as laparoscopy, multiple small incisions are made in the abdominal wall for various devices (light, camera, surgical instruments), the most important of which is the camera, the “eyes” of the surgeon. With its positive impact on the patient’s surgical outcome, comfort and recovery, MIS has become the method of choice for an increasing number of surgical procedures.

However, its practice is made difficult by relatively large laparoscopic cameras which have limited imaging capability and require cumbersome cables that interfere with the surgeon’s movements. To solve this and other problems, faculty, staff and student researchers -- engineers and computer scientists from Calit2 and the Jacobs School of Engineering and surgeons from the UCSD School of Medicine (SOM) -- are collaborating on Calit2’s SurgiCam project to develop a compact, high-performance and wireless surgical imaging system for MIS.

“This is a successful collaboration between engineers and surgeons,” said Mark Talamini, chair and professor of the SOM's Department of Surgery. “It combines rare local talent in micro-imaging, minimally invasive surgery, computer tech, and radio transmission of images.”

SurgiCam will provide improved visual information and detail, while occupying less space and eliminating the bulky cable that connects today’s cameras with operating room video displays. It will offer multiple features and functionality which have not been achieved with any laparoscopic or endoscopic camera previously. The tiny device and system will ultimately enable high-resolution imaging, auto-focus, optical zoom, sophisticated image processing, wireless transmission of video images and other features. The next generation will also offer stereoscopic 3-D vision similar to what is used currently in robotic surgery.

“I would say that the most important feature of this camera is its optical zooming capability - as opposed to digital zooming, as some digital cameras have,” says Boz Kamyabi, a Calit2 senior development engineer. “This feature allows the camera to be out of the way of the surgeons, but they will still have a close up view of where they want to operate.”

These innovations will utilize recent breakthroughs in three areas:

*Bio-inspired fluidic lenses, invented in the laboratory of Jacobs School electrical engineering professor Yu-Hwa Lo.

*Real-time video processing algorithms developed by Jacobs School electrical engineering professor Truong Nguyen and colleagues.

*A novel control mechanism designed by Calit2 engineers.

Lo and Nguyen are professors in the Department of Electrical and Computer Engineering (ECE) within UC San Diego’s Jacobs School of Engineering; Calit2's engineers on the SurgiCam project are led by Don Kimball, a principal development engineer.

“The problem with microfluidic lenses in the past is they have required macro-hydraulic control systems for focus and zoom. In fact, you needed a high-voltage large-area electro-hydrodynamic control system that was more suitable for my father's fire-pump motor controls,” explained Calit2’s Kimball. “You need to control the little lens with an equally tiny mechanism. My Calit2 colleagues Doug Palmer and Daniel Johnson have finally come up with a way to control the lenses so that they can be scaled down in size to something comparable to the lenses themselves.”

“The SurgiCam project is a great example of cooperation between researchers from diverse fields,” noted Calit2 division director Ramesh Rao. “The issues could not be solved without the expertise of everyone involved. I have high hopes for a productive outcome.”

As the School ofMecicine's newly-arrived chief of surgery in late 2005, Talamini approached Ramesh Rao about the problems with current surgical camera systems. Rao asked Calit2's Manager for Strategic Partnerships, Laura Wolszon, to help put together the technical team and shepherd the project during its evolution. SurgiCam has now been in development for over 2 years.

“SurgiCam will enable natural orifice surgery,” remarked surgeon Talamini, referring to a groundbreaking new MIS technique introduced in 2004, called Natural Orifice Transendolumenal Endoscopic Surgery (NOTES). NOTES eliminates the need for abdominal incisions altogether by using natural openings in the body (mouth, vagina or rectum) to access the abdominal cavity. It uses a flexible, tube-like port to allow a camera, light source and surgical instruments to enter the body, without incisions, through a single point of access, further minimizing trauma to the body wall. Its camera system suffers from many disadvantages, however. Most significant is that movements of any instrument in the tube also moves the camera, resulting in an unstable image which can even change its orientation. The surgeon can be looking at the right-side-up view one minute, then sideways or upside-down views in the next. In addition, its camera has no optical zoom or auto-focus capability, and requires a heavy cable to connect it to the video screen.

The researchers on SurgiCam include Lo and Nguyen from ECE; Yoav Freund, a computer science professor (CSE) from the Jacobs School and an expert in automated image analysis; Don Kimball and Doug Palmer, principal development engineers at Calit2; Boz Kamyabi, Cuong Vu and Daniel Johnson, staff engineers at Calit2; and the Dept. of Surgery's Mark Talamini, Santiago Horgan and Yoav Mintz (now at Hadassah University Hospital in Jerusalem). Students contributing to the project are Jack Tzeng, Frank Tsai and Sung Hwan Cho (from ECE); Daniel Johnson (grad student in the Mechanical and Aerospace Engineering department as well as a Calit2 staff engineer); and Cameron Francis (medical student).

The SurgiCam project has been funded by Calit2 UCSD since the beginning, with additional seed funding in the early months from UCSD's von Liebig Center. The Jacobs School of Engineering faculty have contributed their own and their students' time; a two-year grant for partial student support was obtained through the UCSD Chancellor's Interdisciplinary Collaboratory program. Most recently, a $200,000 grant from the U.S. Army's Telemedicine and Advanced Technology Research Center (TATRC) was awarded to Lo and Talamini, to help take the prototype to the next stage. Additional federal funding is being sought.

So far, six SurgiCam-related invention disclosures have been submitted to the UC San Diego Technology Transfer Office and several patent applications have been filed. The research team continues to entertain opportunities for joint development with industry so SurgiCam can be commercialized and thereby benefit the public.

Provided by University of California, San Diego

Explore further: New app uses smartphone selfies to screen for pancreatic cancer

Related Stories

New app uses smartphone selfies to screen for pancreatic cancer

August 28, 2017
Pancreatic cancer has one of the worst prognoses—with a five-year survival rate of 9 percent—in part because there are no telltale symptoms or non-invasive screening tools to catch a tumor before it spreads.

Restoring surgeons' sense of touch during minimally invasive surgeries

October 15, 2013
A small, wireless capsule has been developed that can restore the sense of touch that surgeons are losing as they shift increasingly from open to minimally invasive surgery.

Study shows long-term efficacy of minimally invasive therapy for patients with Barrett's esophagus

February 20, 2013
According to a new study by researchers at the Perelman School of Medicine at the University of Pennsylvania, patients with Barrett's esophagus and early or pre-cancerous cells have been shown to significantly benefit from ...

New alternative to surgery lets doctors remove suspicious polyps, keep colon intact

June 17, 2013
Millions of people each year have polyps successfully removed during colonoscopies. But when a suspicious polyp is bigger than a marble or in a hard-to-reach location, patients are referred for surgery to remove a portion ...

Remote-control surgery grows, despite inconclusive evidence

March 2, 2012
Chubby, pink and anesthetized into unconsciousness and paralysis, 16-week-old Ian Lund was a small bump under blue drapes on an operating table at University of Chicago Medicine. Perched above him was a robot, with arms like ...

Surgeons offer procedures through belly button

September 23, 2012
There's a novel way to remove a gallbladder: Use a surgical robot to take it out through the navel.

Recommended for you

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Financial ties between researchers and drug industry linked to positive trial results

January 18, 2017
Financial ties between researchers and companies that make the drugs they are studying are independently associated with positive trial results, suggesting bias in the evidence base, concludes a study published by The BMJ ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Jan 02, 2009
I hope they speed this up.
The insurance industry is raking havoc
on people who think they have insurance.
This story broke my heart:

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.