Mental deficiency: Researchers identify gene mutations that affect learning, memory in children

February 4, 2009

Mental deficiency is the most frequently occurring, yet least understood handicap in children. Even a mild form can lead to social isolation, bullying and require assistance with simple tasks. The most common variety, non-syndromic mental deficiency (NSMD), is defined as affecting an otherwise normal looking child. With few physical clues in affected children to point researchers towards candidates to study, progress in identifying genetic causes of NSMD has been very slow. Yet that is beginning to change.

Jacques L. Michaud, a geneticist at the Sainte-Justine University Hospital Research Center and the Centre of Excellence in Neuromics of the Université de Montréal, has led a multidisciplinary team which has identified mutations in a novel gene in children with NSMD. Their study is published in today's issue of the New England Journal of Medicine and includes collaborators from McGill University in Canada, the National Institute of Mental Health and the Nathan S Kline Institute in the U.S. and the Université Paris Descartes in France.

"NSMD is a disorder that has many causes," says Dr. Michaud. "By linking this gene to one kind of NSMD, we better understand the causes and we can work towards a way of identifying and treating this incapacitating condition".

The identified mutations affect the function of SYNGAP1, a gene that codes for a protein involved in the development and function of the connections between brain cells, also called synapses. The disruption of this gene has been shown to impair memory and learning in mice.

A new approach

Dr. Michaud's research team hypothesized that new mutations that arise in children - while not present in their parents - may represent a common cause of mental deficiency. "Several observations indicate that new mutations are a frequent cause of neurodevelopmental disorders, but their identification has been difficult because it requires the study of a large fraction of genes, which represents a challenging task," says Dr. Fadi F. Hamdan, first author of the study.

In order to identify these new mutations, the team took advantage of the platform developed by the Synapse to Diseases consortium, based in Montreal, to study 500 synaptic genes in a group of children with unexplained mental deficiency. The team found that three percent of their subjects had new deleterious mutations in the SYNGAP1 gene.

"This discovery illustrates the power of novel technologies that allow researchers to study hundreds of genes in large groups of individuals, and provides validation for the use of such an approach for the exploration of neurodevelopmental disorders," says Dr. Guy A. Rouleau, Director of Sainte-Justine Research Center and Head of the Synapse to Diseases consortium.

Impact of the discovery

Children with mutations in SYNGAP1 show strikingly similar forms of NSMD, with delays in their language and mental development and, in some cases, a mild form of epilepsy. Now that these SYNGAP1 mutations have been linked to NSMD, diagnostic tests can be offered to children with NSMD, and adapted strategies of learning can be developed. Moreover, because of the wealth of knowledge about the function of SYNGAP1, it may also be possible to design targeted pharmacological therapies that would aim at improving cognition and associated complications such as epilepsy.

Source: University of Montreal

Explore further: Movement disorders in young people related to ADHD

Related Stories

Movement disorders in young people related to ADHD

July 3, 2014
Researchers at the University of Copenhagen and the Copenhagen University Hospital have identified a particular genetic mutation that may cause parkinsonism in young people. The mutation interferes with the brain's transport ...

The experimental diet that mimics a rare genetic mutation

April 12, 2016
With the help of a small stool, Mercy Carrion clambers onto an examination table. The obese 50-year-old woman stands just 115.6 cm (3'9.5'') tall. Despite being overweight, Mercy shows no sign of developing diabetes and has ...

Study discovers how rare disease causing cardiovascular and cognitive disorders is triggered

November 20, 2014
A study has discovered the molecular mechanism that triggers homocystinuria, which is a rare disease that causes vascular and ocular disorders, skeletal deformities and mental retardation. It affects 1 in every 250,000 children ...

Researchers report success in treating autism spectrum disorder

July 2, 2012
Using a mouse model of autism, researchers at the University of Cincinnati (UC) and Cincinnati Children's Hospital Medical Center have successfully treated an autism spectrum disorder characterized by severe cognitive impairment.

Potential drug target in sight for rare genetic disease

November 14, 2013
Medical researchers at the University of Alberta have discovered the structure of a potential drug target for a rare genetic disease, paving the way for an alternative treatment for the condition.

New inherited neurometabolic disorder discovered

September 30, 2011
Researchers at the Swedish medical university Karolinska Institutet have discovered a new inherited disorder that causes severe mental retardation and liver dysfunction. The disease, adenosine kinase deficiency, is caused ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.