Scientists identify the neural circuitry of first impressions

March 8, 2009,

Neuroscientists at New York University and Harvard University have identified the neural systems involved in forming first impressions of others. The findings, which show how we encode social information and then evaluate it in making these initial judgments, are reported in the most recent issue of the journal Nature Neuroscience.

Making sense of others in a social interaction is not easy—each new person we meet may be a source of ambiguous and complex information. However, when encountering someone for the first time, we are often quick to judge whether we like that person or not. In fact, previous research has shown that people make relatively accurate and persistent evaluations based on rapid observations of even less than half a minute.

The Nature Neuroscience study sought to investigate the brain mechanisms that give rise to impressions formed immediately after meeting a new person. It was conducted in the laboratory of Elizabeth Phelps, an NYU professor of psychology and neuroscience and one of the co-authors. The study's lead author was Daniela Schiller, a post-doctoral fellow in NYU's Department of Psychology and its Center for Neural Science. The other co-authors were: Jonathan Freeman, a former NYU undergraduate who is currently a doctoral candidate at Tufts University; James Mitchell, an assistant professor at Harvard University's Department of Psychology; and James Uleman, a professor in NYU's Department of Psychology.

To explore the process of first impression formation, the researchers designed an experiment in which they examined the brain activity when these participants made initial evaluations of fictional individuals. The participants were given written profiles of 20 individuals implying different personality traits. The profiles, presented along with pictures of these fictional individuals, included scenarios indicating both positive (e.g., intelligent) and negative (e.g., lazy) traits in their depictions.

After reading the profiles, the participants were asked to evaluate how much they liked or disliked each profiled individual. These impressions varied depending on how much each participant valued the different positive and negative traits conveyed. For instance, if a participant liked intelligence more than they disliked laziness, he or she might form a positive impression. During this impression formation period, participants' brain activity was observed using functional magnetic resonance imaging (fMRI). Based on the participants' ratings, the researchers were able to determine the difference in brain activity when they encountered information that was more, as opposed to less, important in forming the first impression.

The neuroimaging results showed significant activity in two regions of the brain during the encoding of impression-relevant information. The first, the amygdala, is a small structure in the medial temporal lobe that previously has been linked to emotional learning about inanimate objects, as well as social evaluations based on trust or race group. The second, the posterior cingulate cortex (PCC), has been linked to economic decision-making and assigning subjective value to rewards. In the Nature Neuroscience study, these parts of the brain, which are implicated in value processing in a number of domains, showed increased activity when encoding information that was consistent with the impression.

"Even when we only briefly encounter others, brain regions that are important in forming evaluations are engaged, resulting in a quick first impression," commented NYU's Phelps.

NYU's Schiller, the study's lead author, concluded, "When encoding everyday social information during a social encounter, these regions sort information based on its personal and subjective significance, and summarize it into an ultimate score--a first impression."

Source: New York University

Explore further: Being hungry shuts off perception of chronic pain

Related Stories

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

Researchers listen for silent seizures with 'brain stethoscope' that turns brain waves into sound

March 21, 2018
When a doctor or nurse suspects something is wrong with a patient's heart, there's a simple way to check: put a stethoscope over the heart and listen to the sounds it makes. Doctors and nurses can use the same diagnostic ...

New wearable brain scanner allows patients to move freely for the first time

March 21, 2018
A new generation of brain scanner, that can be worn like a helmet allowing patients to move naturally whilst being scanned, has been developed by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham ...

Paraplegic rats walk again after therapy, now we know why

March 19, 2018
With the help of robot-assisted rehabilitation and electrochemical spinal cord stimulation, rats with clinically relevant spinal cord injuries regained control of their otherwise paralyzed limbs. But how do brain commands ...

Biologists discover link between protein in brain, seizure suppression

March 7, 2018
Seizure suppression is the focus of an original research article by two members of the Department of Biology in the College of Arts and Sciences—and they have the pictures to prove it.

New research finds the brain is less flexible than we thought when learning

March 12, 2018
Nobody really knows how the activity in your brain reorganizes as you learn new tasks, but new research from Carnegie Mellon University and the University of Pittsburgh reveals that the brain has various mechanisms and constraints ...

Recommended for you

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).

Flow of spinal fluid disrupted in inherited developmental disorder

March 22, 2018
Scientists have pinpointed the mechanism behind hydrocephalus, an accumulation of cerebrospinal fluid around the brain, in an inherited developmental disorder called Noonan syndrome.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.