The new 'epigenetics:' Poor nutrition in the womb causes permanent genetic changes in the offspring

April 13, 2009,

The new science of epigenetics explains how genes can be modified by the environment, and a prime result of epigenetic inquiry has just been published online in The FASEB Journal: You are what your mother did not eat during pregnancy. In the research report, scientists from the University of Utah show that rat fetuses receiving poor nutrition in the womb become genetically primed to be born into an environment lacking proper nutrition. As a result of this genetic adaptation, the rats were likely to grow to smaller sizes than their normal counterparts. At the same time, they were also at higher risk for a host of health problems throughout their lives, such as diabetes, growth retardation, cardiovascular disease, obesity, and neurodevelopmental delays, among others. Although the study involved rats, the genes and cellular mechanisms involved are the same as those in humans.

"Our study emphasizes that maternal-fetal health influences multiple healthcare issues across generations," said Robert Lane, professor of pediatric neonatology at the University of Utah, and one of the senior researchers involved in the study. "To reduce adult diseases such as diabetes, obesity, and , we need to understand how the maternal-fetal environment influences the health of offspring."

The scientists made this discovery through experiments involving two groups of rats. The first group was normal. The second group had the delivery of nutrients from their mothers' placentas restricted in a way that is equivalent to preeclampsia. The rats were examined right after birth and again at 21 days (21 days is essentially a preadolescent rat) to measure the amount of a protein, called IGF-1, that promotes normal development and growth in rats and humans. They found that the lack of nutrients caused the gene responsible for IGF-1 to significantly reduce the amount of IGF-1 produced in the body before and after birth.

"The new 'epigenetics' has taught us how nature is changed by nurture," said Gerald Weissmann, M.D., Editor-in-Chief of The . "The jury's in and, yes, expectant moms really are eating for two. This study shows not only that we need to address problems such as preeclampsia during pregnancy, but also that prenatal care is far more important than anyone could have imagined a decade ago."

More information: Qi Fu, Xing Yu, Christopher W. Callaway, Robert H. Lane, and Robert A. McKnight. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J. doi:10.1096/fj.08-124768 www.fasebj.org/cgi/content/abstract/fj.08-124768v1

Source: Federation of American Societies for Experimental Biology (news : web)

Related Stories

Recommended for you

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.