Neuroscientists demonstrate link between brainwave acticity and visual perception

April 2, 2009

Can we always see what is in front of us? According to Dr. Tony Ro, a Professor of Psychology and Cognitive Neuroscience at The City College of New York (CCNY), the answer is "no." New research published in "The Journal of Neuroscience" by Professor Ro and colleagues from the University of Illinois demonstrates that the brain cannot detect images when brainwave activity is in a trough.

"We may have our eyes open, but we sometimes miss seeing things," Professor Ro said. "When the brain is in a state of readiness, you see; when it is not, you don't see."

Brainwave activity has peaks and troughs that can occur around 10 times a second, he explained. In their research, Professor Ro and his colleagues demonstrated how the phase of the brainwave or alpha wave can reliably predict visual detection.

Subjects were shown a faint image of a dot on a computer screen and asked to indicate whether they saw the image by pushing a button. Subsequently, the dot was masked making it more difficult to see. "We tried to see whether there was variability in people's ability to see the image," he said. "When we presented the dots with masks sometimes people saw it and sometimes they didn't."

The research has potential applications in improving safety. For example, automobile accidents often occur because drivers miss seeing something, even if for a split second, he explained.

"With brain sensors we might be able to know when people will actually miss seeing something. By being able to predict whether or not someone will see something, we should be able to implement better ways of delivering information to people to ensure that they will detect it. This might then enhance safety, reduce errors, and prevent mishaps that frequently occur because people fail to see something that is right in front of them."

Professor Ro said future research will investigate what occurs when images are flashed by a strobe light at intervals to match these brainwave frequencies.

Source: City College of New York

Related Stories

Recommended for you

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.