The downside of microtubule stability

June 15, 2009
In a cell lacking dynamin 2, the pre-Golgi vesicles (green spheres) remain dispersed. Credit: Tanabe, K., and K. Takei. 2009. J. Cell Biol. doi:10.1083/jcb.200803153.

Stalled microtubules might be responsible for some cases of the neurological disorder Charcot-Marie-Tooth (CMT) disease, Tanabe and Takei report in the Journal of Cell Biology . A mutant protein makes the microtubules too stable to perform their jobs, the researchers find.

The mutations behind CMT disease slow nerve impulses, reduce their strength, or both. One of these leads to production of faulty dynamin 2, a that is crucial for endocytosis but also latches onto microtubules. Tanabe and Takei investigated how defective dynamin 2 hampers cells.

Normal microtubules are continually extending and shrinking. But microtubules from cells that made the faulty version of dynamin 2
were abnormally stable, as measured by how many acetyl groups were attached to them. The researchers also found that blocking normal dynamin 2 with RNAi had the same effect as the mutation, confirming that one of dynamin 2's functions is to promote microtubule turnover.

Removing dynamin 2 shattered the Golgi complex, Tanabe and Takei discovered. Dynamic microtubules help construct the Golgi complex in two ways: they capture the vesicles that combine to form a mature Golgi complex; and they provide a track along which these vesicles can travel to their rendezvous point near the . By breaking up the Golgi apparatus and then watching the fragments reunite, the researchers found that dynamin 2 was essential for the capture step, not for transportation. Dynamin 2 also clings to microtubules of the mitotic spindle, and the team next wants to determine whether the protein regulates microtuble dynamics during the cell cycle.

Source: Rockefeller University Press

Related Stories

Recommended for you

Survivors of childhood brain tumors have increased body fat

March 24, 2017

McMaster University researchers have discovered that while survivors of childhood brain tumours have a similar Body Mass Index (BMI) to healthy children with no cancer, they have more fat tissue overall, and especially around ...

Scientists unveil a giant leap for anti-aging

March 23, 2017

UNSW researchers have made a discovery that could lead to a revolutionary drug that actually reverses ageing, improves DNA repair and could even help NASA get its astronauts to Mars.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.