Generation of a severe memory-deficit mutant mouse by exclusively eliminating the kinase activity of CaMKIIalpha

June 19, 2009

A Japanese research group, led by Dr. Yoko Yamagata of the National Institute for Physiological Sciences, has successfully generated a novel kinase-dead mutant mouse of the CaMKIIalpha gene that completely and exclusively lacks its kinase activity. They examined hippocampal synaptic plasticity and behavioral learning of the mouse, and found a severe deficit in both processes. They reported their findings in Journal of Neuroscience on June 10, 2009.

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKII alpha) is an enzyme that adds phosphates to a variety of protein substrates to modify their functions. CaMKII alpha is enriched in the hippocampus, the memory center of the brain, and is believed to be an essential mediator of activity-dependent synaptic plasticity and memory functions. However, the causative role of the enzymatic activity of CaMKII alpha in such processes has not been demonstrated yet, because this enzyme has multiple protein functions other than the kinase activity.

A Japanese research group, led by Dr Yoko Yamagata of the National Institute for Physiological Sciences, Japan, has successfully generated a novel kinase-dead mutant mouse of the CaMKII alpha gene that completely and exclusively lacks its kinase activity. They examined hippocampal synaptic plasticity and behavioral learning of the mouse, and found a severe deficit in both processes. They reported their findings in the , published on June 10, 2009.

The research group successfully generated a novel CaMKII alpha (K42R) knock-in mouse that completely lacks the kinase activity of CaMKII alpha, and examined the effects on structural, functional, and behavioral expression of synaptic memory. In the K42R brain, tetanus-induced long-term potentiation (LTP), a proposed of memory, and sustained postsynaptic spine enlargement, a structural basis for LTP, were both impaired, whereas dynamic postsynaptic movement of CaMKII alpha protein was preserved. In addition, the K42R mouse showed a severe deficit in inhibitory avoidance learning, a form of memory dependent on the . The research group concluded that the mutant mouse could not form memories and did not remember the events that had just happened.

"We demonstrated that the mutant mouse has a severe memory deficit because of the lack of the kinase activity of CaMKII alpha. This finding supports the idea that the kinase activity of CaMKII alpha is essential to memory functions. Such a memory-deficit mutant mouse could serve as an animal model to study the molecular mechanisms of memory, and be a useful tool for the development and screening of therapeutic reagents for memory-deficit disorders. It may also help open a new therapeutic approach to memory dysfunctions in patients.", said Dr Yamagata.

Source: National Institute for Physiological Sciences

Related Stories

Recommended for you

Chatter in the deep brain spurs empathy in rats

June 23, 2017

It's a classic conundrum: while rushing to get to an important meeting or appointment on time, you spot a stranger in distress. How do you decide whether to stop and help, or continue on your way?

The neural relationship between light and sleep

June 23, 2017

Humans are diurnal animals, meaning that we usually sleep at night and are awake during the day, due at least in part to light or the lack thereof. Light is known to affect sleep indirectly by entraining—modifying the length ...

How brains surrender to sleep

June 23, 2017

Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna study fundamental aspects of sleep in roundworms. Using advanced technologies, they monitor the activity of all nerve cells in the brain while they ...

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females—and how it may enhance a different behavior, aggression, in males—by identifying distinct neural circuits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.