New genetic link between cardiac arrhythmias and thyroid dysfunction identified

September 20, 2009,

Genes previously known to be essential to the coordinated, rhythmic electrical activity of cardiac muscle -- a healthy heartbeat -- have now also been found to play a key role in thyroid hormone (TH) biosynthesis, according to Weill Cornell Medical College researchers.

The authors' findings, published online this week by the peer-reviewed journal Nature Medicine, suggest that mutations of either of two gene products -- proteins called KCNE2 and KCNQ1 -- already known to be involved in human cardiac arrhythmias, could also cause thyroid dysfunction.

"It has long been known that the thyroid influences cardiac function and cardiac arrhythmias," says study senior author Dr. Geoffrey W. Abbott, associate professor of pharmacology in medicine at Weill Cornell Medical College, "but our findings demonstrate a novel genetic link between inherited and thyroid dysfunction."

Additionally, it is the authors' suggestion that assessment of the thyroid status of patients with KCNE2- and KCNQ1-linked cardiac arrhythmias could in some cases reveal a potential endocrine component to their cardiac arrhythmias that may not have been previously determined. This, in turn, could indicate treatment of the thyroid condition, with potentially beneficial effects on cardiac function.

KCNQ1 and KCNE2 were each recognized more than a decade ago as forming in that help end each heartbeat in a timely fashion. Inherited mutations in KCNQ1 and KCNE2 cause ventricular and atrial cardiac arrhythmias, previously presumed to be due entirely to the role of these proteins in cardiac muscle. The researchers have now discovered that KCNQ1 and KCNE2 also form a potassium channel in the thyroid gland.

"When the thyroid does not produce enough TH, a person may experience symptoms such as fatigue and a lowered heart rate, but there is also a more complex interplay between , cardiac structure and cardiac arrhythmias. Our new findings may begin to explain some of these interrelationships," explains Dr. Abbott.

While studying mice that had the KCNE2 gene removed from their genome, the researchers observed that the animals developed symptoms of hypothyroidism, especially during pregnancy, and gave birth to pups with dwarfism, alopecia (baldness) and cardiomegaly (enlarged heart).

After allowing the mouse pups to drink milk only from mothers without the genetic alteration, the pups' symptoms were alleviated. The healthy mothers' milk contains normal levels of TH -- essentially acting as a TH replacement therapy. The symptoms were also treated by direct TH supplementation of pups or mothers.

"We then wanted to test what the mechanism was in the mice that caused deletion of the KCNE2 gene to have negative consequences for the thyroid," says Dr. Abbott.

Using micro positron emission tomography (microPET), Dr. Abbott and his team visualized the accumulation in the mouse thyroid of an iodine radioisotope in real-time. They found that absorption of the radioisotope in the thyroid was greatly impaired in mice lacking the KCNE2 gene. They believe that, normally, the KCNQ1-KCNE2 potassium channel helps another protein (the sodium/iodide symporter) to transport iodide into the thyroid.

Without the KCNQ1-KCNE2 potassium channel, the efficiency of iodide absorption by the thyroid is greatly reduced. Because iodide is an essential component of TH, this means that KCNE2 deletion also impairs TH production.

Future studies will now center on determining how applicable the research team's findings in the mouse are to the human population.

"While we have identified KCNQ1 and KCNE2 in both mouse and human thyroid, much additional work is required before we can fully understand how inherited mutations in the genes coding these proteins affect human thyroid function, how this in turn influences the health of human heart and other tissues, and how useful our discoveries will be in developing therapies to treat thyroid and thyroid-related human disease," explains Dr. Abbott.

Source: New York- Presbyterian Hospital (news : web)

Related Stories

Recommended for you

Identifying Crohn's disease risk factors in the Ashkenazi Jewish population

May 25, 2018
It is estimated that one in three individuals of Ashkenazi Jewish (AJ) descent carry mutations that increase their risk for certain genetic diseases. For instance, Crohn's, a highly heritable inflammatory bowel disease, is ...

How do insects survive on a sugary diet?

May 25, 2018
There's a reason parents tell their kids to lay off the sugar: too much isn't good for you.

Regulatory mutations missed in standard genetic screening lead to congenital diseases

May 25, 2018
Researchers have identified a type of genetic aberration to be the cause of certain neurodevelopmental disorders and congenital diseases, such as autism and congenital heart disease, which are undetectable by conventional ...

New chromosome study can lead to personalised counselling of pregnant women

May 25, 2018
Foetuses with a so-called new balanced chromosomal aberration have a higher risk of developing brain disorders such as autism and mental retardation than previously anticipated. The risk is 20 per cent for foetuses with these ...

New findings on autism-related disorder

May 24, 2018
In a study published today in Nature, Marc Bühler and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have taken a major step forward in elucidating the mechanisms underlying a disorder known ...

Genome study presents new way to track historical demographics of US populations

May 24, 2018
Sharon Browning of the University of Washington and colleagues developed a method to estimate historical effective population size, which is the number of individuals who pass on their genes to the next generation, to reveal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.