Scientists pinpoint breast cancer 'guard' gene

October 6, 2009,

(PhysOrg.com) -- Scientists are close to discovering how normal breast cells become cancerous, according to research by Cambridge scientists published today.

Dr Paul Edwards at the Department of Pathology has identified a gene, NRG1 (neuregulin-1), which is damaged in over half of all breast cancers and fails to guard against normal cells becoming .

Finding the involved in breast cancer development is essential to classify different types of the disease so that the most effective treatment is given for the specific type of breast cancer.

Dr Edwards said, "I believe NRG1 could be the most important tumour suppressor gene discovery in the last 20 years as it gives us vital information about a new mechanism that causes breast cancer. It could also be relevant to a wide range of other common cancers and could lead to new and effective treatments."

Arlene Wilkie, Director of Research and Policy, Breast Cancer Campaign, which funded the study with Cancer Research UK said: "Knowing the identity of this gene will lead to far more detailed studies of how it works and how it is involved in breast cancer development. This research is a major step forward in understanding the genetics of cancer and could open up a host of new strategies to improve diagnosis and treatment.

"In the UK 12,000 women die from this disease every year, so it is vital we understand how develops in order to stop it happening."

Lesley Walker, Cancer Research UK's director of cancer information, said: "This discovery is an important step forward in understanding a disease that more than 45,500 women are diagnosed with in the UK each year. More research is now needed to understand how this 'guard' gene is silenced and how exactly this influences the development of cancer. It might then be possible to develop ways to bypass the gene or target treatments to the defect."

The study was published in the journal Oncogene.

Provided by University of Cambridge (news : web)

Related Stories

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.