Naked mole rats may hold clues to surviving stroke

November 30, 2009,

Blind, nearly hairless, and looking something like toothy, plump, pink fingers, naked mole rats may rank among nature's most maligned creatures, but their unusual physiology endears them to scientists.

Two University of Illinois at Chicago researchers report in the Dec. 9 issue of NeuroReport (now on-line) that adult brain tissue can withstand extreme hypoxia, or oxygen deprivation, for periods exceeding a half-hour -- much longer than from other mammals.

The findings may yield clues for better treatment of brain injuries associated with heart attack, stroke and accidents where the brain is starved of vital oxygen.

John Larson, associate professor of physiology in psychiatry, and Thomas Park, professor of biological sciences, studied African naked mole rats -- small rodents that live about six feet underground in big colonies of up to 300 members. The living is tight and the breathing even worse, with the limited air supply high in carbon dioxide and low in oxygen.

The air they breathe is so foul it would be fatal or lead to irreversible brain damage in any other mammal, Larson and Park said.

But naked mole rats studied were found to show systemic hypoxia adaptations, such as in the lungs and blood, as well as neuron adaptations that allow to function at oxygen and carbon dioxide levels that other mammals cannot tolerate.

"In the most extreme cases, naked mole rat neurons maintain function more than six times longer than mouse neurons after the onset of oxygen deprivation," said Larson.

"We also find it very intriguing that naked mole rat neurons exhibit some electrophysiological properties that suggest that neurons in these animals retain immature characteristics."

All mammal fetuses live in a low-oxygen environment in the womb, and human infants continue to show brain resistance to oxygen deprivation for a brief time into early childhood. But naked mole rats, unlike other mammals, retain this ability into adulthood.

"We believe that the extreme resistance to is a result of evolutionary adaptations for surviving in a chronically low-oxygen environment," said Park.

"The trick now will be to learn how naked mole rats have been able to retain infant-like brain protection from low oxygen, so we can use this information to help people who experience temporary loss of oxygen to the brain in situations like heart attacks, stroke or drowning," he said.

Larson said study of the naked mole rat's brain may yield clues for learning the mechanisms that allow longer neuronal survival after such accidents or medical emergencies, which may suggest ways to avoid permanent human brain damage.

Source: University of Illinois at Chicago (news : web)

Related Stories

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.