New research could advance research field critical to personalized medicine

December 29, 2009, Georgetown University Medical Center

It's the ultimate goal in the treatment of cancer: tailoring a person's therapy based on his or her genetic makeup. While a lofty goal, scientists are steadily moving forward, rapidly exploiting new technologies. Researchers at Georgetown Lombardi Comprehensive Cancer Center report a significant advance in this field of research using a new chip that looks for hundreds of mutations in dozen of genes.

The goal of personalized medicine is to determine the best treatment and the optimal dose carrying the fewest side-effect, especially as new drugs are discovered and treatment options increase. Variations in our encode proteins, which impact how a drug is metabolized or taken in by the cells. This directly impacts the drug's effectiveness and the kinds of side-effects that may be caused by its toxicity.

"Currently, available genotyping tools test only a few genes at a time," explains John F. Deeken, a pharmacogentic researcher at Lombardi. "With a new chip called DMET, as many as 170 genes can be examined for more than a thousand variations. This type of turn-key testing, if validated, could eventually replace highly-specialized, time-consuming and labor-intensive testing -- thus allowing more institutes the opportunity to pursue genotyping and pharmocogenetic research. That alone would be a significant development for our field and for expediting the research many of us believe is the future of medicine."

Such a development is particularly critical for research, both in terms of and treatment. among patients in cancer clinical trials is not commonly taken into account, a factor that could skew dosage amounts and doom an otherwise promising new drug. A more simple and faster test could be readily incorporated into treatment trials.

In his paper published online today in The Pharmacogenomics Journal, Deeken and colleagues report results of the new genotyping platform called DMET, or drug-metabolizing enzymes and transporters, (Affymetrix, Inc., Santa Clara, Calif.). The DMET "casts a wider net," screening for 1256 genetic variations in 170 genes involved in drug absorption, distribution, metabolism and excretion.

Deeken says one of the main obstacles facing pharmocogenetic researchers like himself is the lack of a proven and relatively quick technology for genotyping. "DMET appears to offer great promise in this field as a reliable test unveiling genetic variations that correlated with drug effectiveness and toxicity," says Deeken. "Still, DMET isn't yet ready for primetime in terms of having received FDA approval, but we're getting closer."

Deeken serves as a consultant to Sanofi-Aventis, the manufacturer of docetaxel, a drug involved in the current reported study. Three other authors are employees of Affymetrix, the manufacturer of the DMET platform. The study was done in part at the National Cancer Institute and supported by funding from the National Institutes of Health.

Related Stories

Recommended for you

Add broken DNA repair to the list of inherited colorectal cancer risk factors

February 23, 2018
An analysis of nearly 3,800 colorectal cancer patients—the largest germline risk study for this cancer to date—reveals opportunities for improved risk screening and, possibly, treatment.

Team identifies genetic defect that may cause rare movement disorder

February 22, 2018
A Massachusetts General Hospital (MGH)-led research team has found that a defect in transcription of the TAF1 gene may be the cause of X-linked dystonia parkinsonism (XDP), a rare and severe neurodegenerative disease. The ...

Defects on regulators of disease-causing proteins can cause neurological disease

February 22, 2018
When the protein Ataxin1 accumulates in neurons it causes a neurological condition called spinocerebellar ataxia type 1 (SCA1), a disease characterized by progressive problems with balance. Ataxin1 accumulates because of ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Nartoon
1 / 5 (1) Dec 30, 2009
This is similar to a Robin Cook book -- FEVER -- written in 1982. In his story he uses cells from the victim, and multiplies their defensive use then reinserts them back into the patient. Thus avoiding mismatches because the cure is from the patient themselves.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.