'Live' imaging reveals breast cancer cells' transition to metastasis

December 6, 2009

The spread, or metastasis, of individual breast cancer cells from the main tumor into the blood circulation to the lungs and other body tissues and organs is under the control of a growth factor abbreviated TGFb, according to a study with laboratory mice that will be presented at the American Society for Cell Biology 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

These messenger genes may be a promising target for drugs to block the route, said Erik Sahai, Ph.D., of Cancer Research UK in London.

"The results helped us to find the set of genes that are behind the spread of breast cancer -- and that the genes need to be first turned on and then off in order for single to be able to 'relocate,'" Sahai said.

Sahai's presentation at the ASCB conference follows the Oct. 2009 publication of the study in Nature Cell Biology.

In their studies with with breast cancer, Sahai and his colleagues determined that the control switch is the TGFb (transforming growth factor beta) that previous research had shown to regulate normal cell growth and movement.

Using an advanced microscopy and analysis technique, the Cancer UK scientists documented the movement of the cancer cells from the mouse's primary tumor site.

Because the cancer cells were tagged with a "reporter" protein that glowed blue when the TGFb cell messenger system was active, the researchers were able to determine that single breast cancer cells broke away from the main tumor and entered the when TGFb first turned on the messenger genes in the cancer cells and then turned them off.

But, when TGFb was inactive, clumps, not individual, cells broke away from the main tumor. Because these clumps can spread only through the lymphatic system, the was local, not through the blood.

The spread of individual cancer cells is more life-threatening than is the metastasis of a group of cells.

While single cells can travel through the to sites throughout the body, groups of cancer cells are limited the lymphatic system, which keeps them local.

Advanced microscopy and analysis, said Sahai, allows researchers to investigate cell signaling "live" while observing individual cancer cells make the crucial transition to metastasis. It gives science a closer look at a process that has been largely hidden.

"Surprisingly little is known about the way cancer cells spread through the body because it is so incredibly difficult to study," said Sahai.

"In a medium-sized tumor there could be a billion cells -- and only a small proportion might break away and spread. So it is like trying to find -- and understand -- a moving needle in a very big haystack."

Source: American Society for Cell Biology

Related Stories

Recommended for you

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.