Scientists discover gene module underlying atherosclerosis development

December 4, 2009,

By measuring the total gene activity in organs relevant for coronary artery disease (CAD), scientists at the Swedish medical university Karolinska Institutet have identified a module of genes that is important for the recruitment of white blood cells into the atherosclerotic plaque. The findings, which are to be published in the open-access journal PLoS Genetics, suggest that targeting the migration of white blood cells in the development of atherosclerosis may help to reduce the risk for adverse clinical effects such as ischemia and myocardial infarction.

Atherosclerosis is the major cause of and stroke, and is responsible for half of all deaths in Sweden and other Western countries. Complications of atherosclerosis are rapidly increasing as a major cause of death also in developing countries; the World Health Organisation has predicted that this will become the number one killer by 2010.

"It has been an exciting research project, which has gone on for nearly seven years, involving many different disciplines from thoracic surgeons to mathematicians", says team leader Dr. Johan Björkegren at Karolinska Institutet in Stockholm. "I believe that this kind of clinical study will follow in the aftermath of the large number of ongoing genome-wide association studies."

Rather than individual or individual DNA variants, the discovery encompasses a group of 128 functionally related genes in a 'module' or 'network', which explains their mutual interactions. The involvement of most of these genes in CAD has not previously been known, but it has been known that they are involved in endothelial function and angiogenesis.

Through the collaboration with Dr. Eric Schadt's team at Washington University, Seattle, the researchers were also able to take advantage of previously published genome-wide association studies (GWAS) of CAD to show that the gene module they have discovered is enriched for inherited risk of developing myocardial infarction.

"The GWAS are genetic epidemiology studies often involving tens of thousands of patients and controls, originally designed to link isolated DNA locus to the risk of developing complex common disorders, such as atherosclerosis", says Dr Björkegren. "These studies now need to be complemented with clinical studies where the patients also are screened for intermediate molecular phenotypes in disease-relevant organs. The computational capacities and expertise required to address simultaneously all molecular activities and their relative risk-enrichment are available, all that remains is to start recruiting this kind of cohorts."

The findings suggest that the severity of atherosclerosis depends on the rate of the migration of from the blood into the atherosclerotic plaques. Although this pathway is already known to play a role in atherosclerosis, the Swedish findings suggest that it is the rate limiting step for disease progression. However, Dr Björkegren admits that the exact roles of all 128 genes in atherogenesis remain unexplained. Future studies will focus on understanding the details of how these genes actually contribute to atherosclerosis in cell cultures and animal model systems.

More information: 'Multi-Organ Expression Profiling Uncovers a Gene Module in Coronary Artery Disease Involving Transendothelial Migration of Leukocytes and LIM Domain Binding 2; The Stockholm Atherosclerosis Gene Expression (STAGE) Study', Sara Hägg, Josefin Skogsberg, Jesper Lundström, Peri Noori, Roland Nilsson, Hua Zhong, Shohreh Maleki, Ming-Mei Shang, Björn Brinne, Maria Bradshaw, Vladimir B. Bajic, Ann Samnegľrd, Angela Silveira, Lee M. Kaplan, Bruna Gigante, Karin Leander, Ulf de Faire, Stefan Rosfors, Ulf Lockowandt, Jan Liska, Peter Konrad, Rabbe Takolander, Anders Franco-Cereceda, Eric E. Schadt, Torbjörn Ivert, Anders Hamsten, Jesper Tegnér, and Johan Björkegren. , online publication, 3 December 2009, doi: 10.1371/journal.pgen.1000754

Source: Karolinska Institutet (news : web)

Related Stories

Recommended for you

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.