Soil studies reveal rise in antibiotic resistance

December 23, 2009, Newcastle University

Antibiotic resistance in the natural environment is rising despite tighter controls over our use of antibiotics in medicine and agriculture, Newcastle University scientists have found.

Bacterial DNA extracted from soil samples collected between 1940 and 2008 has revealed a rise in background levels of antibiotic resistant genes.

Newcastle University's Professor David Graham, who led the research, said the findings suggest an emerging threat to public and environmental health in the future.

"Over the last few decades there has been growing concern about increasing and the threat it poses to our health, which is best evidenced by MRSA," explained Professor Graham, who is based in the School of Civil Engineering and Geosciences at Newcastle University.

"Despite increasingly stringent controls on our use of antibiotics, the background level of antibiotic resistant genes, which are markers for potential resistance, continues to rise in soils."

"This increases the chances of a resistant gene in a harmless bacteria being passed onto a disease-causing pathogen, such as a MRSA, with obvious consequences."

Published online this week in the academic journal Environmental Science and Technology, the report uses data taken from five sites in the Netherlands.

The team, which also includes Dr Charles Knapp and Dr Jan Dolfing, of Newcastle University, and Dr Phillip Ehlert, Wageningen University, in the Netherlands, found that 78 per cent of genes from four classes of antibiotics showed increasing levels since 1940 - despite continued efforts to reduce environmental levels.

Professor Graham said the next step would be to analyse from other parts of the world, although he expects to see similar results.

He adds: "The big question is that with more stringent European regulations and greater emphasis on conservative antibiotic use in agriculture and medicine, why are antibiotic resistant gene levels still rising?"

"Whatever the cause, this rise suggests an ever increasing risk of resistant genes being passed from environmental organisms to organisms of greater health concern."

Professor Graham contends that more complementary studies are desperately needed between environmental and public health researchers to determine whether this increasing 'pool' of resistance is actually contributing to harmful bacteria, such as MRSA.

Related Stories

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.