Research breakthrough could lead to new treatment for malaria

January 28, 2010, McGill University

Malaria causes more than two million deaths each year, but an expert multinational team battling the global spread of drug-resistant parasites has made a breakthrough in the search for better treatment. Better understanding of the make-up of these parasites and the way they reproduce has enabled an international team, led by John Dalton, a biochemist in McGill's Institute of Parasitology, to identify a plan of attack for the development of urgently needed new treatments.

Malaria parasites live inside our and feed on proteins, breaking them down so that they can use the proceeds (amino acids) as building blocks for their own proteins. When they have reached a sufficient size they divide and burst out of the red cell and enter another, repeating the process until severe disease or death occurs. Dalton and his colleagues found that certain "digestive enzymes" in the parasites enable them to undertake this process. Importantly, the researchers have also now determined the three-dimensional structures of two enzymes and demonstrated how drugs can be designed to disable the enzymes.

"By blocking the action of these critical parasite enzymes, we have shown that the can no longer survive within the human red blood cell," Dalton explains. The discovery will be published in the , and is the result of collaboration including Australia's Queensland Institute of Medical Research, Monash University and the University of Western Sydney, Wroclaw University of Technology in Poland and the University of Virginia in the U.S. The team is putting their findings into action immediately and is already pursuing anti-malarial drug development.

Related Stories

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Therapy for muscular dystrophy-caused heart failure also improves muscle function in mice

February 22, 2018
Injections of cardiac progenitor cells help reverse the fatal heart disease caused by Duchenne muscular dystrophy and also lead to improved limb strength and movement ability, a new study shows.

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.