Discovery of a new molecular mechanism that guides visual nerves towards the brain

January 7, 2010, Institut de recherches cliniques de Montreal

The laboratory of Dr. Frédéric Charron, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has discovered a new molecular mechanism that permits the guidance of visual nerves towards the brain. Their findings have been published in the current issue of the Journal of Neuroscience.

The research was conducted in collaboration with Dr. Tomomi Shimogori from the RIKEN Science Institute, in Japan. Pierre Fabre, a doctoral student in Dr. Charron's research unit, is the article's first author.

To correctly establish nervous circuits, attractive and repulsive molecules are required to guide growing axons to their appropriate targets. One such molecule is Sonic Hedgehog (Shh). "Using genetic evidence and in utero manipulations in mice, we were able to demonstrate that the Sonic Hedgehog (Shh) molecular pathway is required for the guidance of retinal axons within the optic chiasm," specified Pierre Fabre. This guidance, which acts through repulsion, relies on the Boc receptor, which becomes therefore a prime target for the development of therapies that could stimulate axonal growth after injury or in neurodegenerative disorders.

Moreover, the authors have shed new light on the molecular mechanisms involved in the formation of the visual system. The optic chiasm is the crossroad of optic nerves stemming from both eyes and allows the brain to integrate binocular visual information, a crucial process for establishing 3D vision. "By showing that Boc and Shh play an important role in this neurobiological development process, we have identified a new molecular pathway required in the formation of the visual system," added Dr. Charron.

"CIHR is proud to support research such as Dr. Charron's, which will improve our understanding of visual development," says Dr. Anthony Phillips, Scientific Director of the Canadian Institutes of Health Research (CIHR) Institute of Neurosciences, Mental Health and Addiction. "The discovery of the new will pave the way for research into neurodegenerative disorders and, eventually, treatment."

More information: References for this article are available at: www.jneurosci.org/cgi/content/abstract/30/1/266

Related Stories

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Superagers' youthful brains offer clues to keeping sharp

February 22, 2018
It's pretty extraordinary for people in their 80s and 90s to keep the same sharp memory as someone several decades younger, and now scientists are peeking into the brains of these "superagers" to uncover their secret.

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.