Scientists show how molecular switch helps pancreatic cancer beat drugs

January 28, 2010

Researchers at the Moores Cancer Center at the University of California, San Diego, have found one reason that pancreatic cancer tumors are so difficult to treat with drugs. They have shown how a molecular switch steps up pancreatic cancer cell survival as well as resistance to a standard chemotherapy drug, and have identified alternate routes cancer cells take to avoid the effects of the therapy.

The findings, by a group led by Andrew M. Lowy, MD, professor of surgery and chief of surgical oncology at the UCSD School of Medicine and the Moores UCSD Cancer Center, are reported online and will appear February 1 in the journal Cancer Research. The study provides new insights into development and new potential drug targets and treatment strategies against the disease.

"To understand how to treat pancreatic cancer tumors, we need to better understand their circuitry and behavior," Lowy said.

Pancreatic cancer is a particularly deadly cancer, fast-moving and difficult to detect early. It's estimated that more than 35,000 people died from pancreatic cancer last year in the United States.

RON is a signaling protein known as a tyrosine kinase, essentially a switch that turns on various activities in cells. Previous work in Lowy's lab showed that RON is overexpressed in a majority of precancerous and pancreatic cancer cells, and could also help cells resist dying. The researchers wanted to find out what role, if any, RON played in pancreatic and progression.

In a series of experiments, the researchers showed that RON sends signals that regulate the activity of genes that help tumors cells survive, "implying RON is a potent survival signal for pancreatic cancer cells," Lowy said.

To see the effects of reducing or blocking RON activity, the team shut down RON expression in pancreatic cancer cells using a molecular technique called "gene silencing," and then used those cells to establish tumors in mice. Those tumors were treated with gemcitabine, the most common chemotherapy drug used to treat pancreatic cancer patients. Tumors in which RON was silenced were much more sensitive to the chemotherapy than the RON-expressing cancer cells.

"This is the first demonstration that RON-directed therapy in an animal model can sensitize tumors to chemotherapy," Lowy said. Yet, the scientists found that the and tumors were eventually able to bypass the silencing agent as well as the drug's effects, and continued to grow.

About 50 percent of the tumor cells re-expressed RON. The researchers also found that the tumor cells activated other growth proteins, including epidermal growth factor receptor (EGFR), to enable them to continue to grow.

"This is what most tumors do," Lowy said, explaining that clinically, pancreatic cancer tumors often respond to therapy at first, only to begin growing again. "We know that diseases such as pancreatic cancer are too complex for one drug to be effective. If we can learn to predict the results of RON-directed therapy, maybe we can combine it with an EGFR-directed therapy, for example, to take away tumor escape routes."

Lowy explained that scientists still need far more information about RON's part in pancreatic cancer development and progression. "We need to figure out which tumors are relying on RON," he said. "If we could develop biomarkers to identify which tumors are going to be susceptible to RON-targeted therapy, then we can begin to figure out what tumors do to escape such treatments."

Related Stories

Recommended for you

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

Spaser can detect, kill circulating tumor cells to prevent cancer metastases, study finds

August 21, 2017
A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study.

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.