Researchers create drug to keep tumor growth switched off

February 11, 2010, University of California - San Diego

A novel -- and rapid -- anti-cancer drug development strategy has resulted in a new drug that stops kidney and pancreatic tumors from growing in mice. Researchers at the Moores Cancer Center at the University of California, San Diego, have found a drug that binds to a molecular "switch" found in cancer cells and cancer-associated blood vessels to keep it in the "off" position.

"We locked the kinase switch in the off position in cancer and in tumor-associated ," which differs from the way current inhibitors attempt to block active kinases, said David Cheresh, PhD, professor and vice chair of pathology at the UCSD School of Medicine and the Moores UCSD Cancer Center, who led the work.

The new approach employs scaffold-based chemistry combined with supercomputer technology, allowing for rapid screening and development of drugs that are more selective for the tumor. The development and screening processes were used to identify potential drug candidates able to halt a growth signaling enzyme, or kinase, which can foster tumor blood vessel and tumor growth. According to the researchers, the novel approach may become a useful strategy in cancer drug development. The study appears online the week of February 8, 2010, in the .

In this "rational design approach," Cheresh and his co-workers used the supercomputer at the San Diego Supercomputer Center to custom-design molecules that stabilized the inactive forms of two similar kinases, PDGFRβ and B-RAF - both of which are found to be activated in tumors and in blood vessels that feed tumors. Since PDGFRβ and B-RAF work cooperatively, keeping both turned off causes synergistic effects in tumors, according to Cheresh.

"We custom design a drug for a target that we know either plays a role in blood vessel angiogenesis or tumor invasion," said Cheresh. "By doing this on the computer screen and effectively locking the target in the off position, we can generate selective drugs that are expected to produce minimal side effects. Working with a series of chemical scaffolds, we are able to design specific interactions to fit certain targets in ."

They tested candidates for their effects on embryonic zebrafish blood vessels, which behave similarly to human cancer blood vessels. Molecules that blocked blood vessel growth in the fish were found to do the same in mice, and Cheresh hopes they will soon be tested in cancer patients.

The drug screen system has several advantages, Cheresh explained. Most standard screens test 400,000 candidates in test tubes to identify a single drug candidate. His group's screening method requires fewer than 100 compounds to be screened because they are rationally designed, look for specific types of targets, and use a zebrafish model, testing molecules in cells, tissues and organs for "physiological relevance." The zebrafish is a popular drug research model because it is transparent and the effects of drugs are easily monitored.

In addition, he said, the rational design approach provides drugs that are more selective, hitting desired targets and yielding fewer side effects.

Related Stories

Recommended for you

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tsltan
not rated yet Feb 12, 2010
I was unable to find the cited PNAS paper?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.